HW 5

Recall from HW 4 problem 1 the problem of finding the intersection of two cubic Bezier curves. In this problem, we will find the closest points on two cubic Bezier curves f and g:

$$\min_{t \in [0,1]^2} \|f(t_1) - g(t_2)\|.$$

1. Write a code to compute the Levenberg-Marquardt step p for a given value of the damping parameter λ:

   ```matlab
   function [p] = bezier_lm_step(t, pf, pg, lambda)
   
   If lambda is not explicitly provided, your code should default to $\lambda = 0$ (a Gauss-Newton step).
   
   2. Use Gauss-Newton iteration with line search or Levenberg-Marquardt with adaptive $\lambda$ to solve the closest point problem.

   ```matlab
 function [s,t] = bezier_closest(pf, pg)

 % Compute points s in [0,1] and t in [0,1] such that
 % the distance between $f(s)$ and $g(t)$ is minimized, where f and g
 % are cubic Bezier curves with control points pf and pg (each of
 % dimension d-by-4 with $d \geq 2$).

 You should not assume that the closest point is necessarily on the interior of the domain; you may deal with the end conditions via any reasonable approach, but a barrier or penalty may be simplest. If there are multiple local minima, it is OK to choose one.