
Chapter 7

The QR and Cholesky

Factorizations

§7.1 Least Squares Fitting

§7.2 The QR Factorization

§7.3 The Cholesky Factorization

§7.4 High-Performance Cholesky

The solution of overdetermined systems of linear equations is central to computational science.
If there are more equations than unknowns in Ax = b, then we must lower our aim and be content
to make Ax close to b. Least squares fitting results when the 2-norm of Ax−b is used to quantify
success. In §7.1 we introduce the least squares problem and solve a simple fitting problem using
built-in Matlab features.

In §7.2 we present the QR factorization and show how it can be used to solve the least squares
problem. Orthogonal rotation matrices are at the heart of the method and represent a new class
of transformations that can be used to introduce zeros into a matrix.

The solution of systems of linear equations with symmetric positive definite coefficient ma-
trices is discussed in §7.3 and a special “symmetric version” of the LU factorization called the
Cholesky factorization is introduced. Several different implementations are presented that stress
the importance of being able to think at the matrix-vector level. In the last section we look at
two Cholesky implementations that have appeal in advanced computing environments.

7.1 Least Squares Fitting

It is not surprising that a square nonsingular system Ax = b has a unique solution, since there
are the same number of unknowns as equations. On the other hand, if we have more equations
than unknowns, then it may not be possible to satisfy Ax = b. Consider the 3-by-2 case:
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For this overdetermined Ax = b problem to have a solution, it is necessary for b to be in the span
of A’s two columns. This is not a forgone conclusion since this span is a proper subspace of IR3.
For example, if we try to find x1 and x2 so that
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 ,

then the first equation says that x1 = −2x2. Substituting this into the second equation implies
that 1 = 3x1 + 4x2 = 3(−2x2) + 4x2 = −2x2, while substituting it into equation 3 says that
1 = 5x1 + 6x2 = 5(−2x2) + 6x2 = −4x2. Since the requirements x2 = −1/2 and x2 = −1/4
conflict, the system has no solution.

So with more equations than unknowns, we need to adjust our aims. Instead of trying to
“reach” b with Ax, we try to get as close as possible. Vector norms can be used to quantify the
degree of success. If we work with the 2-norm, then we obtain this formulation:

Given A ∈ IRm×n and b ∈ IRm, find x ∈ IRn to minimize ‖Ax− b ‖2.

This is the least squares (LS) problem, apt terminology because the 2-norm involves a sum of
squares:

‖Ax− b ‖2 =

√

√

√

√

m
∑

i=1

(A(i, :)x− b(i))
2
.

The goal is to minimize the discrepancies in each equation:

(A(i, :)x− b(i))
2

= (ai1x1 + · · ·+ ainxn − bi)
2
.

From the column point of view, the goal is to find a linear combination of A’s columns that gets
as close as possible to b in the 2-norm sense.

7.1.1 Setting Up Least Squares Problems

LS fitting problems often arise when a scientist attempts to fit a model to experimentally obtained
data. Suppose a biologist conjectures that plant height h is a function of four soil nutrient
concentrations a1, a2, a3, and a4:

h = a1x1 + a2x2 + a3x3 + a4x4.

This is a linear model, and x1, x2, x3, and x4 are model parameters whose value must be deter-
mined. To that end, the biologist performs m (a large number) experiments. The ith experiment
consists of establishing the four nutrient values ai1, ai2, ai3 and ai4 in the soil, planting the seed,
and observing the resulting height hi. If the model is perfect, then for i = 1:m we have

hi = ai1x1 + ai2x2 + ai3x3 + ai4x4.

That is,
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Of course, the model will not be perfect, making it impossible to find such an x. The aims of
the biologist are lowered and the minimizer of ‖Ax− h ‖2 is sought. If the minimum sum of
squares is small, then the biologist has reason to be happy with the chosen model. Otherwise,
additional factors may be brought into play (e.g., a fifth nutrient or the amount of sunlight).
The linear model may be exchanged for a nonlinear one with twice the number of parameters:
h = c1e

−x1a1 + · · ·+ c4e
−x1a4 . The treatment of such problems is briefly discussed in the next

chapter.
LS fitting also arises in the approximation of known functions. Suppose the designer of a

built-in square root function needs to develop an approximation to the function f(x) =
√

x on
the interval [.25, 1]. A linear approximation of the form `(x) = α + βx is sought. [Think of `(x)
as a two-parameter model with parameters α and β.] We could set this function to be just the
linear interpolant of f at two well-chosen points. Alternatively, if a partition

.25 = x1 < · · · < xm = 1

is given, then the parameters α and β can be chosen so that the quantity

φm(α, β) =

m
∑

i=1

[(α + βxi)−
√

xi]
2

is minimized. Note that if we set fi =
√

xi, then in the language of matrices, vectors, and norms
we have

φm(α, β) =
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.

Thus, an m-by-2 least squares problem needs to be solved in order to resolve α and β.
It is important to recognize that any norm could be used to quantify the error in the fit of a

model. However, the 2-norm is particularly important for two reasons: (1) In many experimental
settings the fitting errors are normally distributed. The underlying statistics can then be used
to make a rigorous case for 2-norm minimization. (2) The mathematics of LS fitting is rich and
supportive of interesting and powerful algorithms.

7.1.2 Matlab’s Least Squares Tools

The backslash operator can be used to solve the LS problem in Matlab once it is cast in the
matrix/vector terms, i.e., min ‖Ax− b ‖2. Here is a script that solves the square root fitting
problem mentioned above:
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% Script File: ShowLSFit

% Displays two LS fits to the function f(x) = sqrt(x) on [.25,1]

close all

z = linspace(.25,1);

fz = sqrt(z);

for m = [2 100 ]

x = linspace(.25,1,m)’;

A = [ones(m,1) x];

b = sqrt(x);

xLS = A\b;

alpha = xLS(1);

beta = xLS(2);

figure

plot(z,fz,z,alpha+beta*z,’--’)

title(sprintf(’m = %2.0f, alpha = %10.6f, beta = %10.6f’,m,alpha,beta))

end

The two fits are displayed in Figure 7.1 on page 244. Note that if m = 2, then we just obtain
the interpolant to the square root function at x = .25 and x = 1.00. For large m it follows from
the rectangle rule that

.75

m

m
∑

i=1

[(α + βxi) −
√

xi]
2 ≈

∫ 1

.25

[(α + βx) −
√

x]2dx ≡ φ∞(α, β)

where xi = .25 + .75(i− 1)/(m − 1) for i = 1:m. Thus, as m → ∞ the minimizer of φm(α, β)
converges to the minimizer of φ∞(α, β). From the equations

∂φ∞

∂α
= 0 and

∂φ∞

∂β
= 0

we are led to a 2-by-2 linear system that specifies the α∗ and β∗ that minimize φ∞(α, β):
[

3/4 15/32

15/32 21/64

][

α∗

β∗

]

=

[

7/12

31/80

]

.

The solution is given by
[

α∗

β∗

]

=

[

0.370370370

0.651851851

]

.

In general, if we try to fit data points (x1, f1), . . . , (xm, fm) in the least squares sense with a
polynomial of degree d, then an m-by-(d+1) least squares problem arises. The Matlab function
polyfit can be used to solve this problem and polyval can be used to evaluate the approxi-
mant. Suppose the m-vectors x and y house the data and d is the required degree of the fitting
polynomial. It follows that the script

c = polyfit(x,y,d);

xvals = linspace(min(x),max(x));

yvals = polyval(c,xvals);

plot(xvals,yvals,x,y,’o’)
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plots the approximating polynomial and the data. The generation of the polynomial coefficients
in c involves about O(md2) flops.

Finally we mention that some sparse LS problems can be effectively solved using the “\”
operator. The following script applies both full and sparse backslash methods on a sequence of
bandlike LS problems.

% Script File: ShowSparseLS

% Illustrate sparse backslash solving for LS problems

clc

n = 50;

disp(’ m n full A flops sparse A flops’)

disp(’----------------------------------------’)

for m = 100:100:1000

A = tril(triu(rand(m,m),-5),5);

p = m/n;

A = A(:,1:p:m);

A_sparse = sparse(A);

b = rand(m,1);

% Solve an m-by-n LS problem where the A matrix has about

% 10 nonzeros per column. In column j these nonzero entries

% are more or less A(j*m/n+k,j), k=-5:5.

flops(0)

x = A\b;

f1 = flops;

flops(0)

x = A_sparse\b;

f2 = flops;

disp(sprintf(’%4d %4d %10d %10d ’,m,n,f1,f2))

end

The average number of nonzeros per column is fixed at 10. Here are the results:

m n full A flops sparse A flops

----------------------------------------

100 50 425920 73232

200 50 819338 17230

300 50 1199094 22076

400 50 1472866 19300

500 50 1862884 15878

600 50 1865862 13560

700 50 2174622 14560

800 50 2468358 15560

900 50 2778624 16560

1000 50 3113100 17560
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Problems

P7.1.1 Consider the problem

min
x∈IR

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

1
1
1

]

x −

[
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b2
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]
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p

,

where p = 1,2, or ∞. Suppose b1 ≥ b2 ≥ b3. Show that

p = 1 ⇒ xopt = b2
p = 2 ⇒ xopt = (b1 + b2 + b3)/3
p = ∞ ⇒ xopt = (b1 + b3)/2

P7.1.2 Complete the following function:

function [a,b,c] = LSFit(L,R,fname,m)\\

% Assume that fname is a string that names an available function f(x)\\

% that is defined on [L,R]. Returns in a,b, and c values so that if\\

% q(x) = ax$\car$2 + bx + c, then \

% [q(x(1)) - f(x(1))]$\car$2 + ... + [q(x(m)) - f(x(m))]$\car$2

% is minimized. Here, x(i) = L + h(i-1) where h = (R-L)/(m-1) and m >=3.

Efficiency matters.

P7.1.3 Suppose E ∈ IRn×n is a given matrix and that (x1, y1), . . . , (xn, yn) are distinct. Given a scalar h1, we
wish to determine scalars h2, . . . , hn so that

φ(h2, . . . , hn) =

n
∑

i=1

n
∑

j=1

j 6=i

|hj − hi − eij |2/dij

is minimized, where dij =
√

(xi − xj )2 + (yi − yj )2. Write a function h = Leveling(E,x,y,h1) that does this.
x and y should be column vectors and h should be a column n-vector with h(1) = h1 and h(2:n) as the values
that minimize the objective function φ above. Proceed by setting up a least squares problem min‖ Ax − b ‖

2
and

use the “\” operator. However, you should represent the A-matrix with sparse since it has at most two nonzero
entries per row.

P7.1.4 Complete the following function:

function alpha = LSsine(tau,y,n)

%

% tau and y are column m-vectors and n is a positive integer with n<=m.

% alpha is a column n-vector that minimizes the sum

%

% (f(tau(1)) - y(1))^2 + (f(tau(2)) - y(2))^2 + ... + (f(tau(m)) - y(m))^2

% where

% f(t) = alpha(1)*sin(pi*t) + alpha(2)*sin(2*pi*t) + ... + alpha(n)*sin(n*pi*t).

%

Your implementation should be vectorized. Solve the least square problem using “\”.
Let’s see how LSsine can be used to approximate sinusoidal data that has been contaminated with noise.

Define
g(t) = 1.7 sin(2πt) + .47 sin(4πt) + .73 sin(6πt) + .8 sin(8πt)

and compute

tau = linspace(0,3,50)’;

y = feval(’g’,tau) + .4*randn(50,1);
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Apply LSsine to this fuzzy periodic data with n = 8. Print the alpha vector that is produced and display in a
single plot across [0,3], the function g(τ ), the function

g̃(t) =

8
∑

j=1

αj sin(jπt),

and the 50 data points upon which the least squares fit is based. (Use ’o’ in the plot for the display of the data.)
Repeat with n = 4.

P7.1.5 Assume that A is a given n-by-n nonsingular matrix and that b, c, and d are given column n-vectors. Write
a Matlab script that assigns to alpha and beta the scalars α and β that minimize the 2-norm of the solution to
the linear system Ax = b + αc + βd. Use \ for all linear system solving and all least squares minimization.

7.2 The QR Factorization

In the linear equation setting, the Gaussian elimination approach converts the given linear system
Ax = b into an equivalent, easy-to-solve linear system (MA)x = (Mb). The transition from the
given system to the transformed system is subject to a strict rule: All row operations applied to
A must also be applied to b. We seek a comparable strategy in the least squares setting. Our
goal is to produce an m-by-m matrix Q so the given least squares problem

min
x∈IRn

‖Ax− b ‖2

is equivalent to a transformed problem

min
x∈IRn

‖ (QT A)x− (QT b) ‖2,

where, by design, QT A is “simple.”
A family of matrices known as orthogonal matrices can be used for this purpose. A matrix

Q ∈ IRm×m is orthogonal if QT = Q−1, or, equivalently, if QQT = QT Q = I. Here is a 2-by-2
example:

Q =

[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]

.

For this particular Q, it is easy to show that Qx is obtained by rotating x clockwise by θ radians.
The key property of orthogonal matrices that makes them useful in the least squares context

is that they preserve 2-norm. Indeed, if Q ∈ IRm×m is orthogonal and r ∈ IRm, then

‖QT r ‖22 = (QT r)T (QT r) = (rT Q)(QT r) = rT (QQT )r = rT Imr = rT r = ‖ r ‖22.

If Q is orthogonal, then any x that minimizes ‖Ax − b ‖2 also minimizes ‖ (QT A)x− (QT b) ‖2
since

‖ (QT A)x− (QT b) ‖2 = ‖QT (Ax− b) ‖2 = ‖Ax− b ‖2.
Our plan is to apply a sequence of orthogonal transformations to A that reduce it to upper
triangular form. This will render an equivalent, easy-to-solve problem. For example,
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min
x∈IR2

‖Ax− b ‖2 = min
x∈IR2

‖ (QT A)x− (QT b) ‖2 = min
x∈IR2

∥

∥

∥

∥

∥

∥

∥

∥
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∥

∥

∥

∥

∥

∥

2

.

Here, QT b = c is the transformed right-hand side. Note that no matter how x1 and x2 are chosen,
the sum of squares must be at least c2

3 + c2
4. Thus, we “write off” components 3 and 4 and focus

on the reduction in size of components 1 and 2. It follows that the optimum choice for x is that
which solves the 2-by-2 upper triangular system

[

r11 r12

0 r22

] [

x1

x2

]

=

[

c1

c2

]

.

Call this solution xLS and note that in this case

min
x∈IR2

‖Ax− b ‖2 = ‖AxLS − b ‖2 =
√

c2
3 + c2

4.

The columns of an orthogonal matrix define an orthonormal basis. From the equation QT Q =
I we see that the inner product of Q(:, j) with any other column is zero. The columns of Q
are mutually orthogonal. Moreover, since Q(:, j)T Q(:, j) = 1, each column has unit 2-norm,
explaining the “normal” in “orthonormal.”

Finding an orthogonal Q ∈ IRm×m and an upper triangular R ∈ IRm×n so that A = QR is the
QR factorization problem. It amounts to finding an orthonormal basis for the subspace defined
by the columns of A. To see this, note that the jth column of the equation A = QR says that

A(:, j) = Q(:, 1) ∗R(1, j) + Q(:, 2) ∗R(2, j) + · · ·+ Q(:, j) ∗R(j, j).

Thus, any column of A is in the span of {Q(:, 1), . . . , Q(:, n)}. In the example





1 −8
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2 14
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1/3 −2/3 −2/3
2/3 −1/3 2/3
2/3 2/3 −1/3









3 6
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 ,

we see that




1
2
2



 = 3





1/3
2/3
2/3









−8
−1
14



 = 6





1/3
2/3
2/3



 + 15





−2/3
−1/3

2/3



 .

The observation that the QR factorization can help us solve the least squares problem tells us
once again that finding the “right” basis is often the key to solving a linear algebra problem.
Recall from Chapter 2 on page 83 the attractiveness of the Newton basis for the polynomial
interpolation problem.



7.2. THE QR FACTORIZATION 249

7.2.1 Rotations

The Q in the QR factorization can be computed using a special family of orthogonal matrices
that are called rotations. A 2-by-2 rotation is an orthogonal matrix of the form

G =

[

c s
−s c

]

, c = cos(θ), s = sin(θ).

If x = [ x1 x2 ]T , then it is possible to choose (c, s) so that if y = Gx, then y2 = 0. Indeed, from
the requirement that

y2 = −sx1 + cx2 = 0

and the stipulation that c2 + s2 = 1, we merely set

c = x1/
√

x2
1 + x2

2 and s = x2/
√

x2
1 + x2

2.

However, a preferred algorithm for computing the (c, s) pair is the following:

function [c,s] = Rotate(x1,x2)

% [c,s] = Rotate(x1,x2)

% x1 and x2 are real scalars and c and s is a cosine-sine pair so

% -s*x1 + c*x2 = 0.

if x2==0

c = 1;

s = 0;

else

if abs(x2)>=abs(x1)

cotangent = x1/x2;

s = 1/sqrt(1+cotangent^2);

c = s*cotangent;

else

tangent = x2/x1;

c = 1/sqrt(1+tangent^2);

s = c*tangent;

end

end

In this alternative, we guard against the squaring of arbitrarily large numbers and thereby cir-
cumvent the problem of overflow. Note that the sine and cosine are computed without computing
the underlying rotation angle θ. No inverse trigonometric functions are involved in the imple-
mentation.

Introducing zeros into a vector by rotation extends to higher dimensions. Suppose m = 4 and
define

G(1, 3, θ) = =









c 0 s 0
0 1 0 0
−s 0 c 0

0 0 0 1









, c = cos(θ), s = sin(θ).
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This is a rotation in the (1, 3) plane. It is easy to check that G(1, 3, θ) is orthogonal. Note that
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,

and we can determine the cosine-sine pair so that the third component is zeroed as follows:

[c,s] = rotate(x(1),x(3))

For general m, rotations in the (i, k) plane look like this:

G(i, k, θ) =
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,

where c = cos(θ) and s = sin(θ) for some θ. Premultiplication of a matrix by G(i, k, θ) may be
organized as follows assuming that c and s house the cosine and sine:

A([i k],:) = [c s ; -s c]*A([i k],:)

The integer vector [i k] is used in this context to extract rows i and k from the matrix A. Note
that premultiplication by G(i, k, θ) effects only rows i and k.

7.2.2 Reduction to Upper Triangular Form

We now show how a sequence of row rotations can be used to upper triangularize a rectangular
matrix. The 4-by-3 case illustrates the general idea:
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.

The index pairs over the arrows indicate the rows that are being rotated. Notice that the zeroing
proceeds column-by-column and that within each column, the entries are zeroed from the bottom
row on up to the subdiagonal entry. In the m-by-n case we have
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for j=1:n

for i=m:-1:j+1

%Zero A(i,j)

[c,s] = Rotate(A(i-1,j),A(i,j));

A(i-1:i,:) = [c s ; -s c]*A(i-1:i,:);

end

end

Note that when working to zero, the subdiagonal elements in column j, columns 1 through j − 1
are already zero. It follows that the A update is better written as

A(i-1:i,j:n) = [c s ; -s c]*A(i-1:i,j:n);

The algorithm produces a sequence of rotations G1, G2, . . . , Gt with the property that

Gt · · ·G1A = R (upper triangular).

Thus, if we define
QT = Gt · · ·G1

then QT A = R and
A = I · A = (QQT )A = Q(QT A) = QR.

The Q matrix can be built up by accumulating the rotations as they are produced:

Q ← I

Q ← QGT
1

Q ← QGT
2

...

Packaging all these ideas, we get

function [Q,R] = QRRot(A)

% [Q,R] = QRRot(A)

%

% The QR factorization of an m-by-n matrix A. (m>=n).

% Q is m-by-m orthogonal and R is m-by-n upper triangular.

[m,n] = size(A);

Q = eye(m,m);

for j=1:n

for i=m:-1:j+1

%Zero A(i,j)

[c,s] = Rotate(A(i-1,j),A(i,j));

A(i-1:i,j:n) = [c s; -s c]*A(i-1:i,j:n);

Q(:,i-1:i) = Q(:,i-1:i)*[c s; -s c]’;

end

end

R = triu(A);
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A flop count reveals that this algorithm requires about 9mn2 − 3n3 flops. If n = m, then this is
about six times as costly as the LU factorization.

7.2.3 The Least Squares Solution

Once we have the QR factorization of A, then the given least squares problem of minimizing
‖Ax− b ‖2 transforms as follows:

‖Ax− b ‖2 = ‖QT (Ax− b) ‖2 = ‖ (QT A)x − (QT b) ‖2 = ‖Rx− c ‖2

=

∥

∥

∥

∥

[

A1

0

]

x −
[

c1

c2

]
∥

∥

∥

∥

2

=

∥

∥

∥

∥

(

A1x− c1

−c2

)
∥

∥

∥

∥

2

.

Here A1 = Q(:, 1:n)TA is made up of the first n rows of QT A, c1 = Q(:, 1:n)T b is made up of the
top n components of QT b, and c2 = Q(:, n+1:m)T b is made up of the bottom m−n components
of QT b. Notice that no matter how x is chosen, ‖Ax− b ‖2 ≥ ‖ c2 ‖2. The lower bound can
be achieved if we solve the upper triangular system A1x = c1. It follows that the least squares
solution xLS and the norm of the residual ‖AxLS − b ‖2 are prescribed by

function [xLS,res] = LSq(A,b)

% [xLS,res] = LSq(A,b)

% Solution to the LS problem min norm(Ax-b) where A is a full

% rank m-by-n matrix with m>=n and b is a column m-vector.

% xLS is the n-by-1 vector that minimizes the norm(Ax-b) and

% res = norm(A*xLS-b).

[m,n] = size(A);

for j=1:n

for i=m:-1:j+1

%Zero A(i,j)

[c,s] = Rotate(A(i-1,j),A(i,j));

A(i-1:i,j:n) = [c s; -s c]*A(i-1:i,j:n);

b(i-1:i) = [c s; -s c]*b(i-1:i);

end

end

xLS = UTriSol(A(1:n,1:n),b(1:n));

if m==n

res = 0;

else

res = norm(b(n+1:m));

end

In this implementation, Q is not explicitly formed as in QRrot. Instead, the rotations that “make
up” Q are applied to b as they are generated. This algorithm requires about 3mn2 − n3 flops.
Note that if m = n, then the solution to the square linear system Ax = b is produced at a cost
of 2n3 flops, three times what is required by Gaussian elimination.
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7.2.4 Solution Sensitivity

As in the linear equation problem, it is important to appreciate the sensitivity of the LS solution
to perturbations in the data. The notion of condition extends to rectangular matrices. We cannot
use the definition κ2(A) = ‖A ‖‖A−1 ‖ anymore since A, being rectangular, does not have an
inverse. (It is natural to use the 2-norm in the LS problem.) Instead we use an equivalent
formulation that makes sense for both square and rectangular matrices:

1

κ2(A)
= min

rank(A+E)<n

‖ E ‖2
‖A ‖2

.

Roughly speaking, the inverse of the condition is the relative distance to the nearest rank deficient
matrix. If the columns of A are nearly dependent, then its condition number is large.

It can be shown with reasonable assumptions that if x̃LS solves the perturbed LS problem

min‖ (A + ∆A)x− (b + ∆b) ‖2, where ‖∆A ‖2 ≈ eps‖A ‖2, ‖∆b ‖2 ≈ eps‖ b ‖2, (7.1)

then
‖ x̃LS − xLS ‖
‖ xLS ‖

≈ eps
(

κ2(A) + ρLSκ2(A)2
)

,

where ρLS = ‖AxLS − b ‖2. If b is in the span of A’s columns, then this is essentially the
same result obtained for the linear equation problem: O(eps) errors in the data show up as
O(κ2(A)eps) errors in the solution. However, if the minimum residual is nonzero, then the
square of the condition number is involved, and this can be much larger than κ2(A). The script
file ShowLSq illustrates this point. Here are the results for a pair of randomly generated, 10-by-4
LS problems:

m = 10, n = 4, cond(A) = 1.000e+07

Zero residual problem:

Exact Solution Computed Solution

-----------------------------------------

1.0000000000000000 1.0000000003318523

1.0000000000000000 1.0000000003900065

1.0000000000000000 0.9999999992968892

1.0000000000000000 1.0000000001162717

Nonzero residual problem:

Exact Solution Computed Solution

-----------------------------------------

1.0000000000000000 1.0010816095684492

1.0000000000000000 1.0012711526858316

1.0000000000000000 0.9977083453465591

1.0000000000000000 1.0003789656343001
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Both problems are set up so that the exact solution is the vector of all ones. Notice that the
errors are greater in the nonzero residual example, reflecting the effect of the κ2(A)2 factor.

The computed solution obtained by LSq satisfies a nearby LS problem in the sense of (7.1).
The method is therefore stable. But as we learned in the previous chapter and as the preceding
example shows, stability does not guarantee accuracy.

Problems

P7.2.1 Suppose b ∈ IRn and H ∈ IRn×n is upper Hessenberg (hij = 0, i > j + 1). Show how to construct
rotations G1, . . . , Gn−1 so that GT

n−1
· · ·GT

1
H = R is upper triangular. (Hint: Gk should zero hk+1,k .) Write a

Matlab function x = HessQRSolve(H,b) that uses this reduction to solve the linear system Hx = b.

P7.2.2 Given

A =

[

w x
y z

]

,

show how to construct a rotation

Q =

[

c s
−s c

]

so that the (1,2) and (2,1) entries in QT A are the same.

P7.2.3 Suppose A ∈ IRn×n. Show how to premultiply A by a sequence of rotations so that A is transformed to
lower triangular form.

P7.2.4 Modify QRrot so that it efficiently handles the case when A is upper Hessenberg.

P7.2.5 Write a Matlab fragment that prints the a and b that minimize

φ(a, b) =

m
∑

i=1

[(a + bxi) −
√

xi ]2 where x = .25:h:1, h = .75/(m− 1)

for m = 2, 3,4,5,6, 7,8,9, 10,20,40,80,200. Use LS.

P7.2.6 Write a Matlab function Rotate1 that is just like Rotate except that it zeros the top component of a

2-vector.

7.3 The Cholesky Factorization

A matrix A ∈ IRn×n is symmetric if A = AT and positive definite if xT Ax > 0 for all nonzero
x ∈ IRn. Symmetric positive definite (SPD) matrices are the single most important class of
specially structured matrices that arise in applications. Here are some important facts associated
with such matrices:

1. If A = (aij) is SPD, then its diagonal entries are positive and for all i and j,

|aij| ≤ (aii + ajj)/2.

This says that the largest entry in an SPD matrix is on the diagonal and, more qualitatively,
that SPD matrices have more “mass” on the diagonal than off the diagonal.
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2. If A ∈ IRn×n and

|aii| >

n
∑

j=1

j 6=i

|aij|, i = 1:n,

then A is strictly diagonally dominant. If A is also symmetric with positive diagonal entries,
then it is SPD. (See Theorem 7 below.)

3. If C ∈ IRm×n has independent columns and A = CT C, then A is SPD. This fact paves the
way to the method of normal equations for the full-rank LS problem min ‖Ax− b ‖2. It
turns out that xLS solves the SPD system AT Ax = AT b. (See §7.3.5.)

4. If A is SPD, then it is possible to find a lower triangular matrix G so that

A = GGT .

This is called the Cholesky factorization. Once it is obtained the solution to Ax = b can be
determined via forward and back substitution: Gy = b, GT x = y. It is an attractive solution
procedure, because it involves half the number of flops required by Gaussian elimination
and there is no need to pivot for stability.

Our primary goal is to develop a sequence of Cholesky implementations that feature different
“kernel operations,” just as we did with matrix multiplication in §5.2.3. The design of a high-
performance linear equation solver for an advanced computer hinges on being able to formulate
the algorithm in terms of linear algebra that is “friendly” to the underlying architecture. Our
Cholesky presentation is an occasion to elevate our matrix-vector skills in this direction.

7.3.1 Positive Definiteness

We start with an application that builds intuition for positive definiteness and leads to a par-
ticularly simple Cholesky problem. Positive definite matrices frequently arise when differential
equations are discretized. Suppose p(x), q(x), and r(x) are known functions on an interval [a, b],
and that we wish to find an unknown function u(x) that satisfies

−D [p(x)Du(x)] + q(x)u(x) = r(x), a ≤ x ≤ b (7.2)

with u(a) = u(b) = 0. Here, D denotes differentiation with respect to x. This is an example of a
two-point boundary value problem, and there are several possible solution frameworks. We illus-
trate the method of finite differences, a technique that discretizes the derivatives and culminates
in a system of linear equations.

Let n be a positive integer and set h = (b− a)/(n− 1). Define

xi = a + (i− 1)h i = 1:n
pi = p(xi + h/2) i = 1:n− 1
qi = q(xi) i = 1:n
ri = r(xi) i = 1:n
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and let ui designate an approximation to u(xi) whose value we seek. Set u1 = un = 0 since u(x)
is zero at the endpoints. From our experience with divided differences,

Du(xi + h/2) ≈ ui+1 − ui

h

Du(xi − h/2) ≈ ui − ui−1

h

and so we obtain the following approximation:

D [p(x)Du(x)]|x=xi
≈ piDu(xi + h/2)− pi−1Du(xi − h/2)

h
≈

pi

ui+1 − ui

h
− pi−1

ui − ui−1

h
h

.

If we set x = xi in (7.2) and substitute this discretized version of the D[p(x)Du(x)] term, then
we get

1

h2
(−pi−1ui−1 + (pi−1 + pi)ui − piui+1) + qiui = ri, i = 2:n− 1.

Again recalling that u1 = un = 0, we see that this defines a system of n − 2 equations in the
n− 2 unknowns u2, . . . , un−1. For example, if n = 6, then we obtain









p1 + p2 + h2q2 −p2 0 0
−p2 p2 + p3 + h2q3 −p3 0
0 −p3 p3 + p4 + h2q4 −p4

0 0 −p4 p4 + p5 + h2q5

















u2

u3

u4

u5









=









h2r2

h2r3

h2r4

h2r5









.

This is a symmetric tridiagonal system. If the functions p(x) and q(x) are positive on [a, b], then
the matrix T has strict diagonal dominance and is positive definite. The following theorem offers
a rigorous proof of this fact.

Theorem 7 If

T =



















d1 e2 0 · · · 0

e2 d2
. . . 0

0
. . .

. . .
. . .

...
...

. . . dn−1 en−1

0 0 · · · en−1 dn



















has the property that

di >















|e2| if i = 1

|ei|+ |ei+1| if 2 ≤ i ≤ n− 1

|en| if i = n

,

then T is positive definite.



7.3. THE CHOLESKY FACTORIZATION 257

Proof If n = 5, then

xT Tx =
[

x1 x2 x3 x4 x5

]













d1 e2 0 0 0
e2 d2 e3 0 0
0 e3 d3 e4 0
0 0 e4 d4 e5

0 0 0 e5 d5

























x1

x2

x3

x4

x5













=
[

x1 x2 x3 x4 x5

]













d1x1 + e2x2

e2x1 + d2x2 + e3x3

e3x2 + d3x3 + e4x4

e4x3 + d4x4 + e5x5

e5x4 + d5x5













= (d1x
2
1 + d2x

2
2 + d3x

2
3 + d4x

2
4 + d5x

2
5) + 2(e2x1x2 + e3x2x3 + e4x3x4 + e5x4x5).

In general, we find that

xT Tx =

n
∑

i=1

dix
2
i + 2

n
∑

i=2

eixi−1xi.

Our goal is to show that if x 6= 0, then this quantity is strictly positive. The first summation is
obviously positive. The challenge is to show that the second summation cannot be too negative.
Since 0 ≤ (xi−1− xi)

2 = x2
i−1− 2xi−1xi + x2

i , it follows that 2|xi−1||xi| ≤ x2
i−1 + x2

i . Therefore,

xT Tx ≥
n

∑

i=1

dix
2
i − 2

n
∑

i=2

|ei||xi−1||xi|

≥
n

∑

i=1

dix
2
i −

n
∑

i=2

|ei|(x2
i−1 + x2

i )

= (d1 − |e2|)x2
1 +

n−1
∑

i=2

(di − |ei| − |ei+1|)x2
i + (dn − |en|)x2

n.

The theorem follows because in this last expression, every quantity in parentheses is positive and
at least one of the xi is nonzero. 2

Some proofs of positive definiteness are straightforward like this, and others are more difficult.
Once positive definiteness is established, then we have a license to compute the Cholesky factor-
ization. We are ready to show how this is done.
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7.3.2 Tridiagonal Cholesky

It turns out that a symmetric tridiagonal positive definite matrix

T =













d1 e2 0 0 0
e2 d2 e3 0 0
0 e3 d3 e4 0
0 0 e4 d4 e5

0 0 0 e5 d5













, (n = 5),

has a Cholesky factorization T = GGT with a lower bidiagonal G:

G =













g1 0 0 0 0
h2 g2 0 0 0
0 h3 g3 0 0
0 0 h4 g4 0
0 0 0 h5 g5













.

To see this, we equate coefficients

(1, 1): d1 = g2
1 ⇒ g1 =

√
d1

(2, 1): e2 = h2g1 ⇒ h2 = e2/g1

(2, 2): d2 = h2
2 + g2

2 ⇒ g2 =
√

d2 − h2
2

(3, 2): e3 = h3g2 ⇒ h3 = e3/g2

(3, 3): d3 = h2
3 + g2

3 ⇒ g3 =
√

d3 − h2
3

...

and conclude that for i = 1:n, gi =
√

di − h2
i and hi = ei/gi−1 (set h1 ≡ 0). This yields the

following function:

function [g,h] = CholTrid(d,e)

% G = CholTrid(d,e)

% Cholesky factorization of a symmetric, tridiagonal positive definite matrix A.

% d and e are column n-vectors with the property that

% A = diag(d) + diag(e(2:n),-1) + diag(e(2:n),1)

%

% g and h are column n-vectors with the property that the lower bidiagonal

% G = diag(g) + diag(h(2:n),-1) satisfies A = GG^T.

n = length(d);

g = zeros(n,1);

h = zeros(n,1);

g(1) = sqrt(d(1));

for i=2:n

h(i) = e(i)/g(i-1);

g(i) = sqrt(d(i) - h(i)^2);

end
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It is clear that this algorithm requires O(n) flops. Since G is lower bidiagonal, the solution of
Ax = b via Gy = b and GT x = y proceeds as follows:

function x = CholTridSol(g,h,b)

% x = CholTridSol(g,h,b)

%

% Solves the linear system G*G’x = b where b is a column n-vector and

% G is a nonsingular lower bidiagonal matrix. g and h are column n-vectors

% with G = diag(g) + diag(h(2:n),-1).

n = length(g);

y = zeros(n,1);

% Solve Gy = b

y(1) = b(1)/g(1);

for k=2:n

y(k) = (b(k) - h(k)*y(k-1))/g(k);

end

% Solve G’x = y

x = zeros(n,1);

x(n) = y(n)/g(n);

for k=n-1:-1:1

x(k) = (y(k) - h(k+1)*x(k+1))/g(k);

end

See §6.2 for a discussion of bidiagonal system solvers. Overall we see that the complete solution
to a tridiagonal SPD system involves O(n) flops.

7.3.3 Five Implementations for Full Matrices

Here is an example of a 3-by-3 Cholesky factorization:




4 −10 2
−10 34 17

2 −17 18



 =





2 0 0
−5 3 0

1 −4 1









2 −5 1
0 3 −4
0 0 1



 .

An algorithm for computing the entries in the Cholesky factor can be derived by equating entries
in the equation A = GGT :





a11 a12 a13

a21 a22 a23

a31 a32 a33



 =





g11 0 0
g21 g22 0
g31 g32 g33









g11 g21 g31

0 g22 g32

0 0 g33



 .

Since

a11 = g2
11

a21 = g11g21 a22 = g2
21 + g2

22

a31 = g11g31 a32 = g21g31 + g22g32 a33 = g2
31 + g2

32 + g2
33
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we obtain

g11 =
√

a11

g21 = a21/g11

g22 =
√

a22 − g2
21

g31 = a31/g11

g32 = (a32 − g21g31)/g22

g33 =
√

a33 − g2
31 − g2

32 .

The algorithm would break down if any of the gii are zero or complex. But the property of being
positive definite guarantees that neither of these things happen.

To derive the Cholesky algorithm for general n, we repeat the preceding methodology and
compare entries in the equation A = GGT . If i ≥ j, then

aij =

j
∑

k=1

gikgjk ⇒ gijgjj = aij −
j−1
∑

k=1

gikgjk ≡ sij,

and so

gij =







√
sjj i = j

sij/gjj i > j
.

If we compute the lower triangular matrix G row-by-row as we did in the 3-by-3 example, then
we obtain the following implementation:

function G = CholScalar(A)

% G = CholScalar(A)

% Cholesky factorization of a symmetric and positive definite matrix A.

% G is lower triangular so A = G*G’.

[n,n] = size(A);

G = zeros(n,n);

for i=1:n

% Compute G(i,1:i)

for j=1:i

s = A(j,i);

for k=1:j-1

s = s - G(j,k)*G(i,k);

end

if j<i

G(i,j) = s/G(j,j);

else

G(i,i) = sqrt(s);

end

end

end
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An assessment of the work involved reveals that this implementation of Cholesky requires n3/3
flops. This is half of the work required by Gaussian elimination, to be expected since the problem
involves half of the data.

Notice that the k-loop in CholScalar oversees an inner product between subrows of G. With
this observation we obtain the following dot product implementation:

function G = CholDot(A)

% G = CholDot(A)

% Cholesky factorization of a symmetric and positive definite matrix A.

% G is lower triangular so A = G*G’.

[n,n] = size(A); G = zeros(n,n);

for i=1:n

% Compute G(i,1:i)

for j=1:i

if j==1

s = A(j,i);

else

s = A(j,i) - G(j,1:j-1)*G(i,1:j-1)’;

end

if j<i

G(i,j) = s/G(j,j);

else

G(i,i) = sqrt(s);

end

end

end

An inner product is an example of a level-1 linear algebra operation. Level-1 operations involve
O(n) work and O(n) data. Inner products, vector scaling, vector addition, and saxpys are level-1
operations. Notice that CholDot is row oriented because the ith and jth rows of G are accessed
during the inner product.

A column-oriented version that features the saxpy operation can be derived by comparing the
j-th columns in the equation A = GGT :

A(:, j) =

j
∑

k=1

G(:, k)G(j, k).

This can be solved for G(:, j):

G(:, j)G(j, j) = A(:, j)−
j−1
∑

k=1

G(:, k)G(j, k) ≡ s.

But since G is lower triangular, we need only focus on the nonzero portion of this vector:

G(j:n, j)G(j, j) = A(j:n, j) −
j−1
∑

k=1

G(j:n, k)G(j, k) ≡ s(j:n).
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Since G(j, j) =
√

s(j), it follows that G(j:n, j) = s(j:n)/
√

s(j). This leads to the following
implementation:

function G = CholSax(A)

% G = CholSax(A)

% Cholesky factorization of a symmetric and positive definite matrix A.

% G is lower triangular so A = G*G’.

[n,n] = size(A); G = zeros(n,n); s = zeros(n,1);

for j=1:n

s(j:n) = A(j:n,j);

for k=1:j-1

s(j:n) = s(j:n) - G(j:n,k)*G(j,k);

end

G(j:n,j) = s(j:n)/sqrt(s(j));

end

Notice that as i ranges from j to n, the kth column of G is accessed in the inner loop. From the
flop point of view, CholSax is identical to CholDot.

An update of the form

Vector ← Vector + Matrix× Vector

is called a gaxpy operation. Notice that the k-loop in CholSax oversees the gaxpy operation

s(j:n) ← s(j:n) −











G(j, 1:j − 1)
G(j + 1, 1:j − 1)

...
G(n, 1:j − 1)





















G(j, 1)
G(j, 2)

...
G(j, j − 1)











= s(j:n) −G(j:n, 1:j − 1)G(j, 1:j − 1)T .

Substituting this observation into CholSax gives

function G = CholGax(A)

% G = CholGax(A)

% Cholesky factorization of a symmetric and positive definite matrix A.

% G is lower triangular so A = G*G’.

[n,n] = size(A); G = zeros(n,n); s = zeros(n,1);

for j=1:n

if j==1

s(j:n) = A(j:n,j);

else

s(j:n) = A(j:n,j) - G(j:n,1:j-1)*G(j,1:j-1)’;

end

G(j:n,j) = s(j:n)/sqrt(s(j));

end
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The gaxpy operation is a level-2 operation. Level-2 operations are characterized by quadratic
work and quadratic data. For example, in an m-by-n gaxpy operation, O(mn) data is involved
and O(mn) flops are required.

Finally, we developed a recursive implementation. Suppose that n > 1 and that

A =

[

B v
v α

]

is SPD, where B = A(1:n − 1, 1:n− 1), v = A(1:n − 1, n), and α = A(n, n). It is easy to show
that B is also SPD. If

G =

[

G1 0
w β

]

is partitioned the same way and we equate blocks in the equation

[

B v
vT α

]

=

[

G1 0
wT β

] [

G1 0
wT β

]T

=

[

G1 0
wT β

] [

GT
1 w

0 β

]

,

then we find that B = G1G
T
1 , v = G1w, and α = β2 + wT w. This says that if G is to be the

Cholesky factor of A, then it can be synthesized by (1) computing the Cholesky factor G1 of B,
(2) solving the lower triangular system G1w = v for w, and (3) computing β =

√
α−wT w. The

square root is guaranteed to render a real number because

0 <

[

−B−1v
1

]T [

B v
v α

] [

−B−1v
1

]

= α− vT B−1v

= α− vT (G1G
T
1 )−1v

= α− (G−1
1 v)T (G−1

1 v)

= α− wT w.

This is the basis for the following recursive implementation:

function G = CholRecur(A);

% G = CholRecur(A)

% Cholesky factorization of a symmetric and positive definite matrix A.

% G is lower triangular so A = G*G’.

[n,n] = size(A);

if n==1

G = sqrt(A);

else

G(1:n-1,1:n-1) = CholRecur(A(1:n-1,1:n-1));

G(n,1:n-1) = LTriSol(G(1:n-1,1:n-1),A(1:n-1,n))’;

G(n,n) = sqrt(A(n,n) - G(n,1:n-1)*G(n,1:n-1)’);

end
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If this function is applied to the matrix

A =









1 0 0 0
2 3 0 0
4 5 6 0
7 8 9 10

















1 0 0 0
2 3 0 0
4 5 6 0
7 8 9 10









T

and the semicolon is deleted from the recursive call command, then the following sequence of
matrices is displayed:

[

1
]

→
[

1 0
2 3

]

→





1 0 0
2 3 0
4 5 6



→









1 0 0 0
2 3 0 0
4 5 6 0
7 8 9 10









.

From this we infer that CholRecur computes the Cholesky factor G row by row, just like
CholScalar.

7.3.4 Efficiency, Stability, and Accuracy

The script file CholBench benchmarks the five implementations. Here are the results from a
sample n = 64 run:

Algorithm Time Flops

------------------------------

CholScalar 1.000 91538

CholDot 0.405 95443

CholSax 0.273 89586

CholGax 0.050 91601

CholRecur 0.455 96072

The times reported are relative to the time required by CholScalar. The concern is not so much
about the actual values in the table but the fact that different implementations of the same
matrix algorithm can have different levels of performance.

In Gaussian elimination we had to worry about large multipliers. This is not an issue in the
Cholesky factorization because the equation

aii =

i
∑

j=1

g2
ij

implies |gij| ≤
√

aii. Thus no entry in G can be larger than the square root of A’s largest diagonal
entry. This does not imply that all symmetric positive definite systems are well conditioned. The
computed solution is prone to the same kind of error that we saw in Gaussian elimination. In
particular, if x̂ is the computed vector produced by

G = CholScalar(A);

y = LTriSol(G,b);

x = UTriSol(G’,y);
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then
(A + E)x̂ = b, ‖ E ‖ ≈ eps‖A ‖,

and
‖ x̂− x ‖
‖ x ‖ ≈ eps κ(A).

The script file CholErr can be used to examine these heuristics. It solves a series of SPD
systems that involve the Hilbert matrices. These matrices can be generated with the built-in
Matlab function hilb(n). Their condition number increases steeply with n and their exact
inverse can be obtained by calling invhilb. This enables us to compute the true solution and
therefore the exact relative error. Here are the results:

n cond(A) relerr

----------------------------------

2 1.928e+01 1.063e-16

3 5.241e+02 1.231e-15

4 1.551e+04 1.393e-13

5 4.766e+05 1.293e-12

6 1.495e+07 9.436e-11

7 4.754e+08 3.401e-09

8 1.526e+10 1.090e-08

9 4.932e+11 3.590e-06

10 1.603e+13 1.081e-04

11 5.216e+14 2.804e-03

12 1.668e+16 5.733e-02

Relative error deteriorates with increasing condition number in the expected way. CholErr uses
CholScalar, but the results would be no different were any of the other implementations used.

7.3.5 The Matlab CHOL Function and the LS Problem

When applied to an SPD matrix A, the Matlab function Chol(A) returns an upper triangular
matrix R so that A = RT R. Thus, R is the transpose of the matrix G that we have been calling
the Cholesky factor.

The Matlab Cholesky style highlights an important connection between the Cholesky and
QR factorizations. If A ∈ IRm×n has full column rank and A = QR is its QR factorization, then
R̃ = R(1:n, 1:n) defines the Matlab Cholesky factor of AT A:

AT A = (QR)T (QR) = (RT QT )(QR) = RT (QT Q)R = RT R = R̃T R̃.

Note that
A = QR = Q(:, 1:n)R̃,

and so the LS minimizer of ‖Ax− b ‖2 is given by

xLS = R̃−1Q(:, 1:n)Tb = R̃−1(AR̃−1)T b = (R̃T R̃)−1AT b = (AT A)−1AT b.

Thus, xLS is the solution to the SPD system

AT Ax = AT b.
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Solving the LS problem by computing the Cholesky factorization of AT A is called the method of
normal equations. The method works well on some problems but in general is not as numerically
sound as the QR method outlined in the previous section.

Problems

P7.3.1 Complete the following function:

function uvals = TwoPtBVP(n,a,b,pname,qname,rname)

% uvals = TwoPtBVP(n,a,b,pname,qname,rname)

%

% a and b are reals with a<b and n is an integer with >= 3.

% pname, qname, and rname are strings that name functions defined on [a,b], the

% first two of which are positive on the interval.

%

% uvals is a column n-vector with the property that uvals(i) approximates

% the solution to the 2-point boundary value problem

%

% -D[p(x)Du(x)] + q(x)u(x) = r(x) a<=x<=b

% u(a) = u(b) = 0

%

% at x = a+(i-1)h where h = (b-a)/(n-1)

Use it to solve
−D[(2 + x cos(20πx)Du(x)] + (20 sin(1/(.1 + x)2))u(x) = 1000(x− .5)3

with u(0) = u(1) = 0. Set n = 400 and plot the solution.

P7.3.2 The derivation of an outer product Cholesky implementation is based on the following triplet of events:

• Compute G(1,1) = sqrt(A(1,1)).

• Scale to get the rest of G’s first column: G(2:n,1) = A(2:n,1)/G(1,1).

• Repeat on the reduced problem A(2:n,2:n)-G(2:n,1)*G(2:n,1)’.

Using this framework, write a recursive implementation of CholOuter. To handle the base case, observe that if
n = 1, then the Cholesky factor is just the square root of A = A(1, 1).

P7.3.3 A positive definite matrix of the form

A =

















d1 e2 f3 0 0 0 0 0
e2 d2 e3 f4 0 0 0 0
f3 e3 d3 e4 f5 0 0 0
0 f4 e4 d4 e5 f6 0 0
0 0 f5 e5 d5 e6 f7 0
0 0 0 f6 e6 d6 e7 f8

0 0 0 0 f7 e7 d7 e8

0 0 0 0 0 f8 e8 d8

















has a factorization A = GGT , where

G =

















g1 0 0 0 0 0 0 0
h2 g2 0 0 0 0 0 0
p3 h3 g3 0 0 0 0 0
0 p4 h4 g4 0 0 0 0
0 0 p5 h5 g5 0 0 0
0 0 0 p6 h6 g6 0 0
0 0 0 0 p7 h7 g7 0
0 0 0 0 0 p8 h8 g8

















.

By comparing coefficients in the equation A = GGT , develop a Matlab function [g,h,p] = Chol5(d,e,f) that
computes the vectors g(1:n), h(2:n), and p(3:n) from d(1:n), e(2:n), and f(3:n). Likewise, develop triangular
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system solvers LTriSol5(g,h,p,b) and UTriSol5(g,h,p,b) that can be used to solve systems of the form Gx = b
and GT x = b. To establish the correctness of your functions, use them to solve a 10-by-10 system Ax = b, where
di = 100 + i, ei = 10 + i, fi = i with b = 100 ∗ ones(10, 1). Produce a plot that shows how long it takes your
functions to solve an n-by-n system for 10 ≤ n ≤ 100. Print a table showing the number of flops required to solve
Ax = b for n = 10,20,40,80,160.

P7.3.4 Assume that

A =





a1 c2 0 0
c2 a2 c3 0
0 c3 a3 c4
0 0 c4 a4





is positive definite. (a) Show how to compute d1, . . . , d5 and e2, . . . , e5 so that if

L =





1 0 0 0
e2 1 0 0
0 e3 1 0
0 0 e4 1



 and D =





d1 0 0 0
0 d2 0 0
0 0 d3 0
0 0 0 d4



 ,

then A = LDLT . (b) Generalize to arbitrary n and write a function [d,e] = LTL(a,c) that computes this
factorization.

P7.3.5 Suppose we have the Cholesky factor G of an n-by-n symmetric positive definite matrix A. The solution
to the linear system (A + uuT )x = b is given by

x = A−1b −
(

uT A−1b

1 + uT A−1u

)

A−1u,

where u and b are given n-by-1. Write a Matlab script that computes this vector. Make effective use of the
functions LTriSol(T,b) and UTriSol(T,b).

P7.3.6 Suppose N is a positive integer and that A is a 3N -by-2 array and b is a 3N -by-1 array. Our goal is to
solve the N , 3-by-2 least square problems

min‖ A(3k − 2:3k, :)x − b(3k − 2:3k) ‖
2
, k = 1:N.

Note that an individual 3-by-2 LS problem min ‖ Cx − d ‖
2

can be solved via the 2-by-2 normal equation system
CT Cx = CT d as follows:

• Form M = CT C and z = CT d.

• Compute the Cholesky factorization of M : M = LLT .

• Solve Ly = z for y and LT x = y for x.

Complete the following function:

function x = LS32(A,b)

% x = LS32(A,b)

%

% A is a 3N-by-2 array and b is a 3N-by-1 array for some integer N>0.

% Assume that A(3k-2:3k,:) has rank 2 for k=1:N.

%

% x is a 3N-by-1 array with the property that z = x(3k-2:3k) minimizes

% the 2-norm of A(3k-2:3k,:)z - b(3k-2:3k) for k=1:N.

LS32 should have no loops. To do this you’ll have to solve the N problems “in parallel.” For example, the Cholesky
factorization for a 2-by-2 matrix M is a 3-liner:

`11 =
√

m11

`21 = m21/`11

`22 =
√

m22 − `2
21

To vectorize this, get all N of the `11’s first, then get all N of the `21’s, and then get all N of the `22’s.
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7.4 High-Performance Cholesky

We discuss two implementations of the Cholesky factorization that shed light on what it is like
to design a linear equation solver that runs fast in an advanced computing environment. The
block Cholesky algorithm shows how to make a linear algebra computation rich in matrix-matrix
multiplication. This has the effect of reducing the amount of data motion. The shared memory
implementation shows how the work involved in a matrix factorization can be subdivided into
roughly equal parts that can be simultaneously computed by separate processors.

7.4.1 Level-3 Implementation

Level-3 operations involve a quadratic amount of data and a cubic amount of work. Matrix
multiplication is the leading example of a level-3 operation. In the n-by-n, C = AB case, there
are 2n2 input values and 2n3 flops to perform. Unlike level-1 and level-2 operations, the ratio
of work to data grows with problem size in the level-3 setting. This makes it possible to bury
data motion overheads in a computation that is rich in level-3 operations. Algorithms with this
property usually run very fast on advanced architectures.

As an exercise in “level-3 thinking” we show how the Cholesky computation can be arranged
so that all but a small fraction of the arithmetic occurs in the context of matrix multiplication.
The key is to partition the A and G matrices into blocks (submatrices) and to organize the
calculations at that level. For simplicity, we develop a block version of CholScalar. Assume that
n = pm and partition A and G into p-by-p blocks as follows:

A =







A11 · · · A1m

...
...

Am1 · · · Amm






G =







G11 · · · 0
...

. . .
...

Gm1 · · · Gmm






.

This means that we are regarding A and G as m-by-m matrices with p-by-p blocks. For example,
here is a partitioning of a 12-by-12 symmetric positive definite matrix into 3-by-3 blocks:

A =









































34 1 14 17 12 9 6 17 5 9 12 8
1 38 10 11 10 9 17 11 8 7 16 10

14 10 45 10 2 8 11 9 9 18 6 11
17 11 10 43 6 16 17 6 6 9 7 8
12 10 2 6 48 10 2 14 11 7 6 19
9 9 8 16 10 40 4 9 17 12 14 15
6 17 11 17 2 4 44 17 7 9 14 11

17 11 9 6 14 9 17 38 14 4 6 15
5 8 9 6 11 17 7 14 40 12 14 10
9 7 18 9 7 12 9 4 12 30 8 2

12 16 6 7 6 14 14 6 14 8 38 11
8 10 11 8 19 15 11 15 10 2 11 35









































.
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Note that the (i, j) block is the transpose of the (j, i) block. For example,

A23 =





17 6 6
2 14 11
4 9 17



 =





17 2 4
6 14 9
6 11 17





T

= AT
32.

Comparing (i, j) blocks in the equation A = GGT with i ≥ j gives

Aij =

j
∑

k=1

GikGT
jk,

and so

GijG
T
jj = Aij −

j−1
∑

k=1

GikGT
jk ≡ Sij.

Corresponding to the derivation of CholScalar, we obtain the following framework for computing
the Gij:

for i=1:m

for j=1:i

Compute Sij

if i<j

Gij is the solution of XGT
jj = Sij (7.3)

else

Gii is the Cholesky factor of Sii.

end

end

end

To implement this method we use cell arrays to represent both A and G as block matrices.
The idea is to store matrix block (i, j) in cell (i, j). For this we use the MakeBlock function
developed in §5.1.4 (see page 175) :

function A = MakeBlock(A_scalar,p)

% A = MakeBlock(A_scalar,p)

% Represents and n-by-n matrix A_scalar as an (n/p)-by-(n/p) block matrix with

% p-by-p blocks. It is assumed that n is divisible by p.

If applied to the 4-by-4 block matrix above, then this function would set

A{1, 2} =





17 12 9
11 10 9
10 2 8



 .

The conversion from this representation back to conventional matrix form is also required:
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function A = MakeScalar(A_block)

% A = MakeScalar(A_block)

% Represents the m-by-m block matrix A_block as an n-by-n matrix of scalars

% where each block is p-by-p and n=mp.

[m,m] = size(A_block);

[p,p] = size(A_block{1,1});

for i=1:m

for j=1:m

if ~isempty(A_block{i,j})

A(1+(i-1)*p:i*p,1+(j-1)*p:j*p) = A_block{i,j};

end

end

end

With these functions the implementation of (7.3) can proceed:

function G = CholBlock(A,p)

% G = CholBlock(A,p)

% Cholesky factorization of a symmetric and positive definite n-by-n matrix A.

% G is lower triangular so A = G*G’ and p is the block size and must divide n.

% Represent A and G as m-by-m block matrices where m = n/p.

[n,n] = size(A);

m = n/p;

A = MakeBlock(A,p);

G = cell(m,m);

for i=1:m

for j=1:i

S = A{i,j};

for k=1:j-1

S = S - G{i,k}*G{j,k}’;

end

if j<i

G{i,j} = (G{j,j}\S’)’;

else

G{i,i} = CholScalar(S);

end

end

end

% Convert G to a matrix of scalars.

G = MakeScalar(G);

This algorithm involves n3/3 flops, the same number of flops as any of the §7.3 methods. The only
flops that are not level-3 flops are those associated with the computation of the p-by-p Cholesky
factors G11, . . . , Gmm. It follows that the fraction of flops that are level-3 flops is given by

L3 =
(n3/3)− (mp3/3)

n3/3
= 1− 1

m2
.



7.4. HIGH-PERFORMANCE CHOLESKY 271

A tacit assumption in all this is that the block size p is large enough that true level-3 performance
is extracted during the computation of S. Intelligent block size determination is a function
of algorithm and architecture and typically involves careful experimentation. The script file
ShowCholBlock benchmarks CholBlock on an n = 192 problem for various block sizes p. Here
are the results with the unit block size time normalized to 1.000:

Block Size Normalized Time

------------------------------

8 1.000

12 0.667

16 0.667

24 0.828

32 1.222

48 2.273

96 7.828

Notice that the optimum block size is around
√

n.

7.4.2 A Shared Memory Implementation

We now turn our attention to the implementation of the Cholesky factorization in a shared
memory environment. This framework for parallel computation is introduced in §4.5. Assume at
the start that A ∈ IRn×n is housed in shared memory and that we have p processors to apply to
the problem, p << n. Our goal is to write the node program for Proc(1),. . .,Proc(p).

We identify the computation of G(j:n, j) as the jth task. Analogous to the development of
CholSax, we compare jth columns in the equation A = GGT , with

A(:, j) =

j
∑

k=1

G(:, k)G(j, k),

and obtain the key result

G(j:n, j)G(j, j) = A(j:n, j) −
j−1
∑

k=1

G(j:n, k)G(j, k) ≡ s(j:n).

Note that G(j:n, j) = s(j:n)/
√

sj . From this we conclude that the processor in charge of com-
puting G(j:n, j) must oversee the update

A(j:n, j)← A(j:n, j) −
j−1
∑

k=1

G(j:n, k)G(j, k) (7.4)

and the scaling
A(j:n, j)← A(j:n, j)/

√

A(j, j). (7.5)

This requires about 2n(n−j) flops. Since the cost of computing column j is a decreasing function
of j, it does not makes sense for Proc(1) to handle tasks 1 to n/p, Proc(2) to handle tasks 1+n/p
through 2n/p, etc. To achieve some measure of flop load balancing, we assign to Proc(µ) tasks
µ:p:n. This amounts to “dealing” out tasks as you would a deck of n cards. Here is a who-does-
what table for the case n = 22, p = 4:
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Processor Tasks
1 1 5 9 13 17 21
2 2 6 10 14 18 22
3 3 7 11 15 19
4 4 8 12 16 20

Thus Proc(µ) is charged with the production of G(:µ:p:n).
Suppose G(k:n, k) has just been computed and is contained in A(k:n,k) in shared memory.

Proc(µ) can then carry out the updates

for j=k+1:n

if j is one of the integers in mu:p:n

A(k:n,j) = A(k:n,j) - A(k:n,k)A(j,k)

end

end

In other words, for each of the remaining tasks that it must perform (i.e., the indices in mu:p:n

that are greater than k), Proc(µ) incorporates the kth term in the corresponding update sum-
mation (7.4). Assuming that A is in shared memory and that all other variables are local, here is
the node program for Proc(µ):

MyCols = mu:p:n;

for k=1:n

if any(MyCols==k)

% My turn to generate a G-column

A(k:n,k) = A(k:n,k)/sqrt(A(k,k));

end

barrier

% Update columns whose indices are greater than k and in mu:p:n.

for j=k+1:n

if any(MyCols==j)

A(k:n,j) = A(k:n,j)-A(k:n,k)*A(j,k);

end

end

barrier

end

The first if is executed by only one processor, the processor that “owns” column k. The first
barrier is necessary to ensure that no processor uses the new G-column until it is safely stored
in shared memory. Once that happens, the p processors share in the update of columns k+1

through n. The second barrier is necessary to guarantee that column k of A is ready at the start
of the next step.

See Figure 7.2 on the next page for clarification about what goes on at each step in an n = 22,
p = 4 example. The boxed integers indicate the index of the G-column being produced. The
other indices name columns that the processor must update.
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k Proc(1) Proc(2) Proc(3) Proc(4)

1 1 ,5,9,13,17,21 2,6,10,14,18,22 3,7,11,15,19 4,8,12,16,20

2 5,9,13,17,21 2 ,6,10,14,18 3,7,11,15,19 4,8,12,16,20

3 5,9,13,17,21 6,10,14,18,22 3 ,7,11,15,19 4,8,12,16,20

4 5,9,13,17,21 6,10,14,18,22 7,11,15,19 4 ,8,12,16,20

5 5 , 9,13,17,21 6,10,14,18,22 7,11,15,19 8,12,16,20

6 9,13,17,21 6 ,10,14,18,22 7,11,15,19 8,12,16,20

7 9,13,17,21 10,14,18,22 7 ,11,15,19 8,12,16,20

8 9,13,17,21 10,14,18,22 11,15,19 8 ,12,16,20

9 9 ,13,17,21 10,14,18 11,15,19 12,16,20

10 13,17,21 10 ,14,18,22 11,15,19 12,16,20

11 13,17,21 14,18,22 11 ,15,19 12,16,20

12 13,17,21 14,18,22 15,19 12 ,16,20

13 13 ,17,21 14,18,22 15,19 16,20

14 17,21 14 ,18,22 15,19 16,20

15 17,21 18,22 15 ,19 16,20

16 17,21 18,22 19 16 ,20

17 17 ,21 18,22 19 20

18 21 18 ,22 19 20

19 21 22 19 20

20 21 22 20

21 21 22

22 22

Figure 7.2 Distribution of tasks (n = 22, p = 4)

Problems

P7.4.1 Generalize CholBlock so that it can handle the case when the dimension n is not a multiple of the block
dimension p. (This means that there may be some less-than-full-size blocks on the right and bottom edges of A.)

P7.4.2 Write a function f = FlopBalance(n,p) that returns a p-vector f with the property that fµ is the number
of flops Proc(µ) must perform in shared memory implementation developed in the text.

P7.4.3 Assume that n = mp. Rewrite the node program with the assumption that Proc(µ) computes

G(:, (µ − 1)m + 1:µm).

As in the previous problem, analyze the distribution of flops.
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M-Files and References

Script Files

ShowLSFit Fits a line to the square root function.
ShowLSq Sensitivity of LS solutions.
ShowSparseLS Examines \ LS solving with sparse arrays.
ShowQR Illustrates QRrot.
ShowBVP Solves a two-point boundary value problem.
CholBench Benchmarks various Cholesky implementations.
CholErr Sensitivity of symmetric positive definite systems.
ShowCholBlock Explores block size selection in CholBlock.

Function Files

Rotate Computes a rotation to zero bottom of 2-vector.
QRrot QR factorization via rotations.
LSq Least squares solution via QR factorization.
CholTrid Cholesky factorization (tridiagonal version).
CholTridSol Solves a factored tridiagonal system.
CholScalar Cholesky factorization (scalar version).
CholDot Cholesky factorization (dot product version).
CholSax Cholesky factorization (saxpy version).
CholGax Cholesky factorization (gaxpy version).
CholRecur Cholesky factorization (recursive version).
CholBlock Cholesky factorization (block version).
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