
Chapter 6

Linear Systems

§6.1 Triangular Problems

§6.2 Banded Problems

§6.3 General Problems

§6.4 Analysis

The linear equation problem involves finding a vector x ∈ IRn so that Ax = b, where b ∈ IRn

and A ∈ IRn×n are nonsingular. This problem is at the heart of many problems in scientific com-
putation. We have already seen that the vector of coefficients that define a polynomial interpolant
is a solution to a linear equation problem. In Chapter 3 the problem of spline interpolation led
to a tridiagonal system. Most numerical techniques in optimization and differential equations
involve repeated linear equation solving. Hence it is extremely important that we know how to
solve this problem efficiently and that we fully understand what can be expected in terms of
precision.

In this chapter the well-known process of Gaussian elimination is related to the factorization
A = LU , where L is lower triangular and U is upper triangular. We arrive at the general
algorithm in stages, discussing triangular, tridiagonal, and Hessenberg systems first. The need
for pivoting is established, and this prompts a discussion of permutation matrices and how they
can be manipulated in Matlab. Finally, we explore the issue of linear system sensitivity and
identify the important role that the condition number plays.

6.1 Triangular Problems

At one level, the goal of Gaussian elimination is to convert a given linear system into an equivalent,
easy-to-solve triangular system. Triangular system solving is easy because the unknowns can be
resolved without any further manipulation of the matrix of coefficients. Consider the following
3-by-3 lower triangular case:





`11 0 0
`21 `22 0
`31 `32 `33









x1

x2

x3



 =





b1

b2

b3



 .

209

210 CHAPTER 6. LINEAR SYSTEMS

The unknowns can be determined as follows:

x1 = b1/`11

x2 = (b2 − `21x1)/`22

x3 = (b3 − `31x1 − `32x2)/`33

This is the 3-by-3 version of an algorithm known as forward substitution. Notice that the process
requires det(A) = `11`22`33 to be nonzero.

6.1.1 Forward Substitution

Let’s look at the general Lx = b problem when L is lower triangular. To derive a specification
for xi, we merely rearrange the ith equation

`i1x1 + · · ·+ `iixi = bi

to obtain

xi =



bi −

i−1
∑

j=1

`ijxj





/

`ii.

If this is evaluated for i = 1:n, then a complete specification for x is obtained:

for i = 1:n

x(i) = b(i);

for j=1:i-1

x(i) = x(i) - L(i,j)*x(j);

end

x(i) = x(i)/L(i,i);

end

Note that the j-loop effectively subtracts the inner product

i−1
∑

j=1

`ijxj = L(i, 1:i− 1) ∗ x(1:i− 1)

from bi, so we can vectorize as follows:

x(1) = b(1)/L(1,1);

for i = 2:n

x(i) = (b(i) - L(i,1:i-1)*x(1:i-1)) /L(i,i);

end

Since the computation of xi involves about 2i flops, the entire process requires about

2 (1 + 2 + · · ·+ n) ≈ n2

flops. The forward substitution algorithm that we have derived is row oriented. At each stage an
inner product must be computed that involves part of a row of L and the previously computed
portion of x.

6.1. TRIANGULAR PROBLEMS 211

A column-oriented version that features the saxpy operation can also be obtained. Consider
the n = 3 case once again. Once x1 is resolved, it can be removed from equations 2 and 3, leaving
us with a reduced, 2-by-2 lower triangular system. For example, to solve





2 0 0
1 5 0
7 9 8









x1

x2

x3



 =





6
2
5



 ,

we find that x1 = 3 and then deal with the 2-by-2 system

[

5 0
9 8

] [

x2

x3

]

=

[

2
5

]

− 3

[

1
7

]

=

[

−1
−16

]

.

This implies that x2 = −1/5. The system is then reduced to

8x3 = −16− 9(−1/5),

from which we conclude that x3 = −71/40. In general, at the jth step we solve for xj and then
remove it from equations j + 1 through n. At the start, x1 = b1/`11 and equations 2 through n
transform to











`22 0 · · · 0
`32 `33 · · · 0
...

...
. . .

...
`n2 `n3 · · · `nn





















x2

x3

...
xn











=











b2 − x1`21

b3 − x1`31

...
bn − x1`n1











= b(2:n)− x1L(2:n, 1).

In general the j-th step computes xj = bj/`jj and then performs the saxpy update

b(j + 1:n)← b(j + 1:n)− xjL(j + 1:n, j).

Putting it all together, we obtain

function x = LTriSol(L,b)

% x = LTriSol(L,b)

% Solves the nonsingular lower triangular system Lx = b

% where L is n-by-n, b is n-by-1, and x is n-by-1.

n = length(b);

x = zeros(n,1);

for j=1:n-1

x(j) = b(j)/L(j,j);

b(j+1:n) = b(j+1:n) - L(j+1:n,j)*x(j);

end

x(n) = b(n)/L(n,n);

This version involves n2 flops, just like the row-oriented, dot product version developed earlier.

212 CHAPTER 6. LINEAR SYSTEMS

6.1.2 Backward Substitution

The upper triangular case is analogous. The only difference is that the unknowns are resolved in
reverse order. Thus to solve





u11 u12 u13

0 u22 u23

0 0 u33









x1

x2

x3



 =





b1

b2

b3



 ,

we work from the bottom to the top:

x3 = b3/u33

x2 = (b2 − u23x3)/u22

x1 = (b1 − u12x2 − u13x3)/u11

For general n, we obtain

x(n) = b(n)/U(n,n);

for i=n-1:-1:1

x(i) = (b(i) - U(i,i+1:n)*x(i+1:n))/U(i,i);

end

As in the lower triangular case, the computations can be arranged so that a column-oriented,
saxpy update procedure is obtained:

function x = UTriSol(U,b)

% x = UTriSol(L,b)

% Solves the nonsingular upper triangular system Ux = b.

% where U is n-by-n, b is n-by-1, and X is n-by-1.

n = length(b);

x = zeros(n,1);

for j=n:-1:2

x(j) = b(j)/U(j,j);

b(1:j-1) = b(1:j-1) - x(j)*U(1:j-1,j);

end

x(1) = b(1)/U(1,1);

This algorithm is called backward substitution.

6.1.3 Multiple Right-Hand Sides

In many applications we must solve a sequence of triangular linear systems where the matrix stays
the same, but the right-hand sides vary. For example, if L is lower triangular and B ∈ IRn×r is
given, our task is to find X ∈ IRn×r so that LX = B. Looking at the kth column of this matrix
equation, we see that

LX(:, k) = B(:, k).

One way to solve for X is merely to apply the single right-hand side forward substitution algorithm
r times:

6.1. TRIANGULAR PROBLEMS 213

X = zeros(n,r);

for k=1:r

X(:,k) = LTriSol(L,B(:,k));

end

However, if we expand the call to LTriSol,

X = zeros(n,r);

for k=1:r

for j=1:n-1

X(j,k) = B(j,k)/L(j,j);

B(j+1:n,k) = B(j+1:n,k) - L(j+1:n,j)*X(j,k);

end

X(n,k) = B(n,k)/L(n,n);

end

and modify the order of computation, then we can vectorize “on k.” To do this, note that in
the preceding script we solve for X(:, 1), and then X(:, 2), and then X(:, 3), etc. Instead, we can
solve for X(1, :), and then X(2, :), and then X(3, :), etc. This amounts to reversing the order of
the k- and j- loops:

X = zeros(n,r);

for j=1:n-1

for k=1:r

X(j,k) = B(j,k)/L(j,j);

B(j+1:n,k) = B(j+1:n,k) - L(j+1:n,j)*X(j,k);

end

end

for k=1:r

X(n,k) = B(n,k)/L(n,n);

end

Vectorizing the k-loops, we obtain

function X = LTriSolM(L,B)

% X = LTriSolM(L,B)

% Solves the nonsingular lower triangular system LX = B

% where L is n-by-n, B is n-by-r, and X is n-by-r.

[n,r] = size(B);

X = zeros(n,r);

for j=1:n-1

X(j,1:r) = B(j,1:r)/L(j,j);

B(j+1:n,1:r) = B(j+1:n,1:r) - L(j+1:n,j)*X(j,1:r);

end

X(n,1:r) = B(n,1:r)/L(n,n);

In high-performance computing environments, maneuvers like this are often the key to efficient
matrix computations.

214 CHAPTER 6. LINEAR SYSTEMS

As an example, we use LTriSolM to compute the inverse of the n-by-n Forsythe matrix
Fn = (fij) defined as follows:

fij =







0 if i < j
1 if i = j
−1 if i > j

.

This is accomplished by solving FnX = In. For example,













1 0 0 0 0
−1 1 0 0 0
−1 −1 1 0 0
−1 −1 −1 1 0
−1 −1 −1 −1 1













X =













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













.

Running the script file

% Script File: ShowTri

%

% Inverse of the 5-by-5 Forsythe Matrix.

n = 5;

L = eye(n,n) - tril(ones(n,n),-1)

X = LTriSolM(L,eye(n,n))

we find

X =













1 0 0 0 0
1 1 0 0 0
2 1 1 0 0
4 2 1 1 0
8 4 2 1 1













.

Problems

P6.1.1 Modify LTriSol so that if `11 = 0, then it returns a vector x that satisfies Lx = 0 with x1 = −1.

P6.1.2 Develop a vectorized method for solving the upper triangular multiple right-hand-side problem.

P6.1.3 Suppose T ∈ IRn×n and S ∈ IRm×m are given upper triangular matrices and that B ∈ IRm×n. Write a
Matlab function X = Sylvester(S,T,B) that solves the matrix equation SX − XT = B for X . Note that if we
compare kth columns in this equation, we obtain

SX(:, k) −

k
∑

j=1

T (j, k)X(:, j) = B(:,k).

That is,

(S − T (k, k)I)X(:, k) = B(:,k) +

k−1
∑

j=1

T (j, k)X(:, j).

By using this equation for k = 1:n, we can solve for X(:,1), . . . ,X(:, n) in turn. Moreover, the matrix S−T (k, k)I
is upper triangular so that we can apply UTriSol. Assume that no diagonal entry of S is a diagonal entry of T .

P6.1.4 Repeat the previous problem, assuming that S and T are both lower triangular.

6.2. BANDED PROBLEMS 215

P6.1.5 Note that by solving the multiple right-hand-side problem TX = B with B = I, then the solution is
the inverse of T . Write a Matlab function X = UTriInv(U) that computes the inverse of a nonsingular upper
triangular matrix. Be sure to exploit any special patterns that arise because of B’s special nature.

P6.1.6 As a function of n, i, and j, give an expression for the (i, j) entry of the inverse of the n-by-n Forsythe
matrix.

P6.1.7 Complete the following function:

function Z = PartInvU(A,p)

% Z = PartInvU(A,p)

% A is an n-by-n upper triangular nonsingular matrix and

% p is an integer that satisfies 1<=p<=n.

% Z = X(1:p,1:p) where AX = I

Use UTriSol(A,b).

6.2 Banded Problems

Before we embark on the development of Gaussian elimination for general linear systems, we
take time out to look at the linear equation problem in two special cases where the matrix of
coefficients already has a large number of zeros.

In the spline interpolation problem of §3.3, we have to solve a tridiagonal linear system whose
matrix of coefficients looks like this:

A =

















× × 0 0 0 0
× × × 0 0 0
0 × × × 0 0
0 0 × × × 0
0 0 0 × × ×
0 0 0 0 × ×

















.

(See page 125.) In such a system, each unknown xi is coupled to at most two of its “neighbors.”
For example, the fourth equation relates x4 to x3 and x5. This kind of local coupling among
the unknowns occurs in a surprising number of applications. It is a happy circumstance because
the matrix comes to us with zeros in many of the places that would ordinarily be zeroed by the
elimination process.

Upper Hessenberg systems provide a second family of specialized problems that are useful to
consider. An upper Hessenberg matrix has lower bandwidth 1. For example,

A =

















× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×

















.

Upper Hessenberg linear systems arise in many applications where the eigenvalues and eigenvec-
tors of a matrix are required.

216 CHAPTER 6. LINEAR SYSTEMS

For these two specially structured linear equation problems, we set out to show how the matrix
of coefficients can be factored into a product A = LU , where L is lower triangular and U is upper
triangular. If such a factorization is available, then the solution to Ax = b follows from a pair of
triangular system solves:

Ly = b

Ux = y







⇒ Ax = (LU)x = L(Ux) = Ly = b.

In terms of the functions LTriSol and UTriSol,

y = LTriSol(L,b);

x = UTriSol(U,y);

For tridiagonal and Hessenberg systems, the computation of L and U is easier to explain than
for general matrices.

6.2.1 Tridiagonal Systems

Consider the following 4-by-4 tridiagonal linear system:









d1 f1 0 0
e2 d2 f2 0
0 e3 d3 f3

0 0 e4 d4

















x1

x2

x3

x4









=









b1

b2

b3

b4









.

One way to derive the LU factorization for a tridiagonal A is to equate entries in the following
equation:









d1 f1 0 0
e2 d2 f2 0
0 e3 d3 f3

0 0 e4 d4









=









1 0 0 0
`2 1 0 0
0 `3 1 0
0 0 `4 1

















u1 f1 0 0
0 u2 f2 0
0 0 u3 f3

0 0 0 u4









.

Doing this, we find

(1,1): d1 = u1 ⇒ u1 = d1

(2,1): e2 = `2u1 ⇒ `2 = e2/u1

(2,2): d2 = `2f1 + u2 ⇒ u2 = d2 − `2f1

(3,2): e3 = `3u2 ⇒ `3 = e3/u2

(3,3): d3 = `3f2 + u3 ⇒ u3 = d3 − `3f2

(4,3): e4 = `4u3 ⇒ `4 = e4/u3

(4,4): d4 = `4f3 + u4 ⇒ u4 = d4 − `4f3

In general, for i = 2:n we have

(i, i− 1): ei = `iui−1 ⇒ `i = ei/ui−1

(i, i): di = `ifi−1 + ui ⇒ ui = di − `ifi−1

which leads to the following procedure:

6.2. BANDED PROBLEMS 217

function [l,u] = TriDiLU(d,e,f)

% [l,u] = TriDiLU(d,e,f)

% Tridiagonal LU without pivoting. d,e,f are n-vectors and assume

% A = diag(e(2:n),-1) + diag(d) + diag(f(1:n-1),1) has an LU factorization.

% l and u are n-vectors with the property that if L = eye + diag(l(2:n),-1)

% and U = diag(u) + diag(f(1:n-1),1), then A = LU.

n = length(d); l = zeros(n,1); u = zeros(n,1);

u(1) = d(1);

for i=2:n

l(i) = e(i)/u(i-1);

u(i) = d(i) - l(i)*f(i-1);

end

This process requires 3n flops to carry out and is defined as long as u1, . . . , un−1 are nonzero.
As mentioned previously, to solve Ax = b we must solve

Ly =









1 0 0 0
`2 1 0 0
0 `3 1 0
0 0 `4 1

















y1

y2

y3

y4









=









b1

b2

b3

b4









= b

for y, and

Ux =









u1 f1 0 0
0 u2 f2 0
0 0 u3 f3

0 0 0 u4

















x1

x2

x3

x4









=









y1

y2

y3

y4









= y

for x. These bidiagonal systems can be solved very simply. Looking at Ly = b, we see by
comparing components that

y1 = b1 ⇒ y1 = b1

`2y1 + y2 = b2 ⇒ y2 = b2 − `2y1

`3y2 + y3 = b3 ⇒ y3 = b3 − `3y2

`4y3 + y4 = b4 ⇒ y4 = b4 − `4y3

`5y4 + y5 = b5 ⇒ y5 = b5 − `5y4

From this we conclude

function x = LBiDiSol(l,b)

% x = LBiDiSol(l,b)

% Solves the n-by-n unit lower bidiagonal system Lx = b

% where l and b are n-by-1 and L = I + diag(l(2:n),-1).

n = length(b); x = zeros(n,1);

x(1) = b(1);

for i=2:n

x(i) = b(i) - l(i)*x(i-1);

end

This requires 2n flops. Likewise, the upper bidiagonal system Ux = y can be solved as follows:

218 CHAPTER 6. LINEAR SYSTEMS

function x = UBiDiSol(u,f,b)

% x = UBiDiSol(u,f,b)

% Solves the n-by-n nonsingular upper bidiagonal system Ux = b

% where u, f, and b are n-by-1 and U = diag(u) + diag(f(1:n-1),1).

n = length(b); x = zeros(n,1);

x(n) = b(n)/u(n);

for i=n-1:-1:1

x(i) = (b(i) - f(i)*x(i+1))/u(i);

end

Summarizing the overall solution process, the script

[l,u] = TriDiLU(d,e,f);

y = LBiDiSol(l,b);

x = UBiDiSol(u,f,y);

solves the tridiagonal system Ax = b, assuming that d, e, and f house the diagonal, subdiagonal,
and superdiagonal of A. The following table indicates the amount of arithmetic required:

Operation Procedure Flops
A = LU TriDiLU 3n
Ly = b LBiDiSol 2n
Ux = y UBiDiSol 3n

Run the script file ShowTriD, which illustrates some of the key ideas behind tridiagonal system
solving.

6.2.2 Hessenberg Systems

We derived the algorithm for tridiagonal LU by equating coefficients in A = LU . We could use
this same strategy for Hessenberg LU . However, in anticipation of the general LU computation,
we proceed in “elimination terms.”

Presented with a Hessenberg system
















× × × × × ×
× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×

































×
×
×
×
×
×

















=

















×
×
×
×
×
×

















,

we notice that we can get the first unknown to “drop out” of the second equation by multiplying
the first equation by a21/a11 and subtracting from the second equation. This transforms the
system to

















× × × × × ×
0 × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×

































×
×
×
×
×
×

















=

















×
×
×
×
×
×

















.

6.2. BANDED PROBLEMS 219

Then we notice that we can eliminate the second unknown from equation 3 by multiplying the
(new) second equation by a32/a22 and subtracting from the third equation:

















× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 × × × ×
0 0 0 × × ×
0 0 0 0 × ×

































×
×
×
×
×
×

















=

















×
×
×
×
×
×

















.

The pattern emerges regarding what happens to A during this process:

for k=1:n-1

Set v(k) = A(k+1,k)/A(k,k).

Update row k+1 by subtracting from it, v(k) times row k.

end

The modification of row k + 1 involves the following computations:

for j=1:n

A(k+1,j) = A(k+1,j) - v(k)*A(k,j)

end

Note that since rows k and k +1 have zeros in their first k−1 positions, it makes sense to modify
the loop range to j=k:n. Incorporating this change and vectorizing, we obtain

function [v,U] = HessLU(A)

% [v,U] = HessLU(A)

% Computes the factorization H = LU where H is an n-by-n upper Hessenberg

% and L is an n-by-n lower unit triangular and U is an n-by-n upper triangular

% matrix.

% v is a column n-by-1 vector with the property that L = I + diag(v(2:n),-1).

[n,n] = size(A);

v = zeros(n,1);

for k=1:n-1

v(k+1) = A(k+1,k)/A(k,k);

A(k+1,k:n) = A(k+1,k:n) - v(k+1)*A(k,k:n);

end

U = triu(A);

It can be shown that this procedure requires n2 flops. The connection between the vector v of
multipliers and the lower triangular matrix L needs to be explained.

In the n = 6 case, steps 1 through 5 in HessLU involve the premultiplication of the matrix A
by the matrices

M1 =

















1 0 0 0 0 0
−v2 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















, . . . , M5 =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 −v6 1

















220 CHAPTER 6. LINEAR SYSTEMS

respectively. Run the script file ShowHessLU for an illustration of the reduction. From this we
conclude that HessLU basically finds multiplier matrices M1, . . . , Mn−1 so that

Mn−1 · · ·M1A = U

is upper triangular. The multiplier matrices are nonsingular, and it is easy to verify (for example)
that

M−1
3 =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 −v4 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















−1

=

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 v4 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

















.

Thus,

A = LU,

where

L = M−1
1 · · ·M−1

n−1.

The product of the M−1
i is lower triangular, and it can be shown that

M−1
1 M−1

2 M−1
3 M−1

4 M−1
5 =

















1 0 0 0 0 0
v2 1 0 0 0 0
0 v3 1 0 0 0
0 0 v4 1 0 0
0 0 0 v5 1 0
0 0 0 0 v6 1

















is a lower bidiagonal matrix. Thus the script

[v,U] = HessLU(A);

y = LBiDiSol(v,b);

x = UTriSol(U,y);

solves the upper Hessenberg system Hx = b and n2 + 2n + n2 ≈ 2n2 flops are required.

Problems

P6.2.1 Write a Matlab function x = HessTrans(A,b) that solves the linear system AT x = b, where A is upper
Hessenberg. Hint: If A = LU , then AT = UT LT . In the Hessenberg case, UT is lower triangular and LT is upper
bidiagonal.

P6.2.2 Incorporate the tridiagonal system solving codes into CubicSpline of Chapter 3. Quantify through bench-
marks the improvement in efficiency. Notice also the reduction in memory requirements.

P6.2.3 Suppose H ∈ IRm×m and T ∈ IRn×n are given matrices with H upper Hessenberg and T upper triangular.
Assume that B ∈ IRm×n. Write a Matlab function X = SylvesterH(H,T,B) that solves the matrix equation
HX − XT = B for X . (See P6.1.3 on page 214.)

6.3. GENERAL PROBLEMS 221

P6.2.4 Suppose W ∈ IRn×n is tridiagonal and T = W + αeneT
1

+ βe1eT
n where α and β are scalars and e1 and

en are the first and last columns of the n-by-n identity matrix. This is just a fancy way of defining a tridiagonal
matrix “with corners”:

T =











w11 w12 0 0 0 β
w21 w22 w23 0 0 0
0 w32 w33 w34 0 0
0 0 w43 w44 w45 0
0 0 0 w54 w55 w56

α 0 0 0 w65 w66











n = 6.

This kind of matrix arises in the periodic spline problem.
It can be shown that the solution to the linear system (W + αeneT

1
+ βe1eT

n)x = b is given by

x = z − Y

[

1 + y11 y12

yn1 1 + yn2

]−1 [

z1

zn

]

,

where z = W−1b ∈ IRn and Y = W−1[αen βe1] ∈ IRn×2. Write a function x = TriCorner(d,e,f,alpha,beta,b)

that solves (W + αeneT
1

+ βe1eT
n)x = b where d, e, and f are linear arrays that encode W as in TriDiLU. Make

effective use of that function as well as LBiDiSol and UBiDiSol. You may assume that pivoting is not necessary.

6.3 General Problems

We are now ready to develop a general linear equation solver. Again, the goal is to find a lower
triangular L and an upper triangular U such that A = LU .

6.3.1 The n = 3 Case

The method of Gaussian elimination proceeds by systematically removing unknowns from equa-
tions. The core calculation is the multiplication of an equation by a scalar and its subtraction
from another equation. For example, if we are given the system

2x1 − x2 + 3x3 = 13
−4x1 + 6x2 − 5x3 = −28

6x1 + 13x2 + 16x3 = 37
(6.1)

then we start by multiplying the first equation by −4/2 = −2 and subtracting it from the second
equation. This removes x1 from the second equation. Likewise we can remove x1 from the third
equation by subtracting from it 6/2 = 3 times the first equation. With these two reductions we
obtain

2x1 − x2 + 3x3 = 13
4x2 + x3 = −2

16x2 + 7x3 = −2

We then multiply the (new) second equation by 16/4 = 4 and subtract it from the (new) third
equation, obtaining

2x1 − x2 + 3x3 = 13
4x2 + x3 = −2

3x3 = 6
(6.2)

Thus, the elimination transforms the given square system into an equivalent upper triangular
system that has the same solution. The solution of triangular systems is discussed in §6.1. In

222 CHAPTER 6. LINEAR SYSTEMS

our 3-by-3 example we proceed as follows:

x3 = 6/3 = 2
x2 = (−2− x3)/4 = −1
x1 = (3− 3x3 + x2)/2 = 3

This description of Gaussian elimination can be succinctly described in matrix terms. In
particular, the process finds a lower triangular matrix L and an upper triangular matrix U so
A = LU . In the preceding example, we have

A =





2 −1 3
−4 6 −5

6 13 16



 =





1 0 0
−2 1 0

3 4 1









2 −1 3
0 4 1
0 0 3



 ≡ LU.

Notice that the subdiagonal entries in L are made up of the multipliers that arise during the
elimination process. The diagonal elements of L are all equal to one. Lower triangular matrices
with this property are called unit lower triangular.

In matrix computations, the language of “matrix factorizations” has assumed a role of great
importance. It enables one to reason about algorithms at a high level, which in turn facilitates
generalization and implementation on advanced machines. Thus, we regard Gaussian elimination
as a procedure for computing the LU factorization of a matrix. Once this factorization is obtained,
then as we have discussed, the solution to Ax = b requires a pair of triangular system solves:
Ly = b, Ux = y. There are practical reasons why it is important to decouple the right-hand side
from the elimination process. But the curious reader will note that the transformed right-hand
side in (6.2) is the solution to the lower triangular system





1 0 0
−2 1 0

3 4 1









y1

y2

y3



 =





13
−28

37



 .

After this build-up for the LU factorization, it is disturbing to note that the elimination
process on which it is based can break down in some very simple examples. For example, if we
modify (6.1) by changing the (1, 1) coefficient from 2 to 0,

x2 + 3x3 = 13
−4x1 + 6x2 − 5x3 = −28

6x1 + 13x2 + 16x3 = 37

then the elimination process defined previously cannot get off the ground because we cannot use
the first equation to get rid of x1 in the second and third equations. A simple fix is proposed in
§6.3.4 on page 227. Until then, we assume that the matrices under discussion submit quietly to
the LU factorization process without any numerical difficulty.

6.3. GENERAL PROBLEMS 223

6.3.2 General n

We now turn our attention to the LU factorization of a general matrix. In looking at the system

















× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×

































×
×
×
×
×
×

















=

















×
×
×
×
×
×

















,

we see that we can eliminate the unknown x1 from equation i by subtracting from it ai1/a11

times equation 1. If we do this for i = 2:6, then the given linear system transforms to

















× × × × × ×
0 × × × × ×
0 × × × × ×
0 × × × × ×
0 × × × × ×
0 × × × × ×

































×
×
×
×
×
×

















=

















×
×
×
×
×
×

















.

To remove x2 from equation i, we scale (the new) 2nd equation by ai2/a22 and subtract from
row i. Doing this for i = 3:6 gives

















× × × × × ×
0 × × × × ×
0 0 × × × ×
0 0 × × × ×
0 0 × × × ×
0 0 × × × ×

















.

















×
×
×
×
×
×

















=

















×
×
×
×
×
×

















.

The pattern should now be clear regarding the operations that must be performed on A:

for k=1:n-1

Compute the multipliers required to eliminate x(k) from equations

k+1 through n and store in v(k+1:n).

Update equations k+1 through n.

end

The multipliers required in the kth step are specified as follows:

for i=k+1:n

v(i) = A(i,k)/A(k,k);

end

That is, v(k+1:n) = A(k+1:n,k)/A(k,k). The act of multiplying row k by v(i) and subtracting
from row i can be implemented with A(i,k:n) = A(i,k:n) - v(i)*A(k,k:n). The column
range begins at k because the first k − 1 entries in both rows k and i are zero. Incorporating
these ideas, we get the following procedure for upper triangularizing A:

224 CHAPTER 6. LINEAR SYSTEMS

for k=1:n-1

v(k+1:n) = A(k+1:n,k)/A(k,k);

for i=k+1:n (6.3)
A(i,k+1:n) = A(i,k+1:n) - v(i)*A(k,k+1:n);

end

end

U = triu(A)

The i-loop oversees a collection of row-oriented saxpy operations. For example, if n = 6 and
k = 3, then the three row saxpys

A(4, 4:6) ← A(4, 4:6)− v(4)A(3, 4:6)

A(5, 4:6) ← A(5, 4:6)− v(5)A(3, 4:6)

A(6, 4:6) ← A(6, 4:6)− v(6)A(3, 4:6)

are equivalent to

A(4:6, 4:6) =





A(4, 4:6)
A(5, 4:6)
A(6, 4:6)



 ←





A(4, 4:6)
A(5, 4:6)
A(6, 4:6)



 −





v4

v5

v6



 A(3, 4:6).

Thus, the i-loop in (6.3) can be replaced by a single outer product update:

for k=1:n-1

v(k+1:n) = A(k+1:n,k)/A(k,k)

A(k+1:n,k+1:n) = A(k+1:n,k+1:n) - v(k+1:n)*A(k,k+1:n); (6.4)
end

U = triu(A);

So much for the production of U . To compute L, we proceed as in the Hessenberg case and
show that it is made up of the multipliers. In particular, during the kth pass through the loop
in (6.3), the current A matrix is premultiplied by a multiplier matrix of the form

M3 =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 −v4 1 0 0
0 0 −v5 0 1 0
0 0 −v6 0 0 1

















, (n = 6, k = 3).

After n− 1 steps,

Mn−1 · · ·M2M1A = U

is upper triangular and so

A =
(

M−1
1 M−1

2 · · ·M−1
n−1

)

U.

6.3. GENERAL PROBLEMS 225

The inverse of a multiplier matrix has a particularly simple form. For example,

M−1
3 =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 v4 1 0 0
0 0 v5 0 1 0
0 0 v6 0 0 1

















.

Moreover, L = M−1
1 M−1

2 · · ·M−1
n−1 is lower triangular with the property that L(:, k) is the kth

column of M−1
k . Thus, in the n = 6 case we have

L = M−1
1 M−1

2 M−1
3 M−1

4 M−1
5 =



















1 0 0 0 0 0

v
(1)
2 1 0 0 0 0

v
(1)
3 v

(2)
3 1 0 0 0

v
(1)
4 v

(2)
4 v

(3)
4 1 0 0

v
(1)
5 v

(2)
5 v

(3)
5 v

(4)
5 1 0

v
(1)
6 v

(2)
6 v

(3)
6 v

(4)
6 v

(5)
6 1



















,

where the superscripts are used to indicate the step associated with the multiplier. This suggests
that the multipliers can be stored in the locations that they are designed to zero. For example,

v
(2)
5 is computed during the second step in order to zero a52 and it can be stored in location

(5, 2). This leads to the following implementation of Gaussian elimination:

function [L,U] = GE(A)

% [L,U] = GE(A)

% The LU factorization without pivoting. If A is n-by-n and has an

% LU factorization, then L is unit lower triangular and U is upper

% triangular so A = LU.

[n,n] = size(A);

for k=1:n-1

A(k+1:n,k) = A(k+1:n,k)/A(k,k);

A(k+1:n,k+1:n) = A(k+1:n,k+1:n) - A(k+1:n,k)*A(k,k+1:n);

end

L = eye(n,n) + tril(A,-1);

U = triu(A);

It can be shown that this calculation requires 2n3/3 flops. The script ShowGE steps through this
factorization process for the matrix

A =













17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9













,

226 CHAPTER 6. LINEAR SYSTEMS

and terminates with

L =













1.0000 0 0 0 0
1.3529 1.0000 0 0 0
0.2353 −0.0128 1.0000 0 0
0.5882 0.0771 1.4003 1.0000 0
0.6471 −0.0899 1.9366 4.0578 1.0000













and

U =













17.0000 24.0000 1.0000 8.0000 15.0000
0 −27.4706 5.6471 3.1765 −4.2941
0 0 12.8373 18.1585 18.4154
0 0 0 −9.3786 −31.2802
0 0 0 0 90.1734













.

Together with LTriSOl and UTriSol, GE can be used to solve a linear system Ax = b:

[L,U] = GE(A);

y = LTriSol(L,b);

x = UTriSol(U,y)

But this assumes that no zero divides arise during the execution of GE.

6.3.3 Stability

The time has come to address the issue of breakdown in the Gaussian elimination process. We
start with the grim fact that a matrix need not have an LU factorization. To see this, equate
coefficients in

[

0 1
1 1

]

=

[

1 0
`21 1

] [

u11 u12

0 u22

]

.

Equality in the (1, 1) position implies that u11 = 0. But then it is impossible to have agreement
in the (2, 1) position since we must have `21u11 = 1. Note that there is nothing “abnormal”
about an Ax = b problem in which a11 = 0. For example,

[

0 1
1 1

] [

x1

x2

]

=

[

1
2

]

has solution x = [1 1]T . It looks like corrective measures are needed to handle the undefined
multiplier situation.

But problems also arise if the multipliers are large:

A =

[

δ 1
1 1

]

=

[

1 0
1/δ 1

][

δ 1
0 1− 1

δ

]

= LU, (δ 6= 0).

The following script solves

Ax =

[

δ 1
1 1

][

x1

x2

]

=

[

1 + δ
2

]

= b

by computing A = LU and then solving Ly = b and Ux = y in the usual fashion:

6.3. GENERAL PROBLEMS 227

% Script File: NoPivot

% Examines solution to [delta 1 ; 1 1][x1;x2] = [1+delta;2]

% for a sequence of diminishing delta values.

clc

disp(’ Delta x(1) x(2) ’)

disp(’---’)

for delta = logspace(-2,-18,9)

A = [delta 1; 1 1];

b = [1+delta; 2];

L = [1 0; A(2,1)/A(1,1) 1];

U = [A(1,1) A(1,2) ; 0 A(2,2)-L(2,1)*A(1,2)];

y(1) = b(1);

y(2) = b(2) - L(2,1)*y(1);

x(2) = y(2)/U(2,2);

x(1) = (y(1) - U(1,2)*x(2))/U(1,1);

disp(sprintf(’ %5.0e %20.15f %20.15f’,delta,x(1),x(2)))

end

Here are the results:

Delta x(1) x(2)

1e-02 1.000000000000001 1.000000000000000

1e-04 0.999999999999890 1.000000000000000

1e-06 1.000000000028756 1.000000000000000

1e-08 0.999999993922529 1.000000000000000

1e-10 1.000000082740371 1.000000000000000

1e-12 0.999866855977416 1.000000000000000

1e-14 0.999200722162641 1.000000000000000

1e-16 2.220446049250313 1.000000000000000

1e-18 0.000000000000000 1.000000000000000

(You might want to deduce why x̂2 is exact.) A simple way to avoid this degradation is to
introduce row interchanges. In the preceding example this means we apply Gaussian elimination
to compute the LU factorization of A with its rows reversed:

[

δ 1
1 1

] [

x1

x2

]

=

[

2
1 + δ

]

.

A full precision answer is obtained.

6.3.4 Pivoting

To anticipate the row interchange process in the general case, we consider the third step in the
n = 6 case. At the beginning of the step we face a partially reduced A that has the following

228 CHAPTER 6. LINEAR SYSTEMS

form:

A =

















× × × × × ×
0 × × × × ×
0 0 a33 × × ×
0 0 a43 × × ×
0 0 a53 × × ×
0 0 a63 × × ×

















.

(Note that the displayed aij are not the original aij; they have been updated twice.) Ordinarily,
we would use multipliers a43/a33, a53/a33, and a63/a33 to zero entries (4, 3), (5, 3), and (6, 3)
respectively. Wouldn’t it be nice if |a33| was the largest entry in A(3:6, 3)? That would ensure
that all the multipliers are less than or equal to 1. This suggests that at the beginning of the kth
step we swap row k and row q, where it is assumed that aqk has the largest absolute value of any
entry in A(k:n, k). When we emerge from this process we will have in hand the LU factorization
of a row permuted version of A:

function [L,U,piv] = GEpiv(A)

% [L,U,piv] = GE(A)

% The LU factorization with partial pivoting. If A is n-by-n, then

% piv is a permutation of the vector 1:n and L is unit lower triangular

% and U is upper triangular so A(piv,:) = LU. |L(i,j)|<=1 for all i and j.

[n,n] = size(A);

piv = 1:n;

for k=1:n-1

[maxv,r] = max(abs(A(k:n,k)));

q = r+k-1;

piv([k q]) = piv([q k]);

A([k q],:) = A([q k],:);

if A(k,k) ~= 0

A(k+1:n,k) = A(k+1:n,k)/A(k,k);

A(k+1:n,k+1:n) = A(k+1:n,k+1:n) - A(k+1:n,k)*A(k,k+1:n);

end

end

L = eye(n,n) + tril(A,-1);

U = triu(A);

A number of details need to be discussed. Applied to a vector, the Matlab max function
returns the largest entry and its index. Thus, the preceding max computation assigns the largest
of the numbers |akk|, . . . , |ank| to maxv and its index to r. However, the rth index of the length
n− k + 1 vector A(k:n, n) identifies an entry from row r + k− 1 of A. Thus, to pick up the right
row index, we need the adjustment q = r+k-1. With q so defined, rows q and k are swapped.
Note that by swapping all of these two rows, some of the earlier multipliers are swapped. This
ensures that the multipliers used in the elimination of unknowns from a given equation “stay
with” that equation as it is reindexed.

The last issue to address concerns the recording of the interchanges. An integer vector
piv(1:n) is used. It is initialized to 1:n. Every time rows are swapped in A, the corresponding
entries in piv are swapped. Upon termination, piv(k) is the index of the equation that is now

6.3. GENERAL PROBLEMS 229

the kth equation in the permuted system. The integer vector piv is a representation of a permu-

tation matrix P . A permutation matrix is obtained by reordering the rows of the identity matrix.
If piv = [3 1 5 4 2], then it represents the permutation

P =













0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0













.

Observe that

P













b1

b2

b3

b4

b5













=













b3

b1

b5

b4

b2













= b(piv).

Likewise, PA = A(piv, :). Thus, GEpiv computes a factorization of the form PA = LU . To
solve a linear system Ax = b using GEpiv, we notice that x also satisfies (PA)x = (Pb). Thus,
if PA = LU , Ly = Pb, and Ux = y, then Ax = b. Using the piv representation, the three-step
process takes the following form

[L,U,piv] = GEpiv(A);

y = LTriSol(L,b(piv));

x = UTriSol(U,y);

and 2n3/3 + n2 + n2 ≈ 2n3/3 flops are required. Thus, the factorization dominates the overall
computation for large n. Moreover, the pivoting amounts to an O(n2) overhead and so the
stabilization purchased by the row swapping does not seriously affect flop-efficiency.

The script ShowGEpiv steps through the factorization applied to the matrix

A =













17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9













,

producing

L =













1.0000 0 0 0 0
0.7391 1.0000 0 0 0
0.1739 0.2527 1.0000 0 0
0.4348 0.4839 0.7231 1.0000 0
0.4783 0.7687 0.5164 0.9231 1.0000













230 CHAPTER 6. LINEAR SYSTEMS

U =













23.0000 5.0000 7.0000 14.0000 16.0000
0 20.3043 −4.1739 −2.3478 3.1739
0 0 24.8608 −2.8908 −1.0921
0 0 0 19.6512 18.9793
0 0 0 0 −22.2222













and piv =
[

2 1 5 3 4
]

. Notice that entries in L are all ≤ 1 in absolute value.1

6.3.5 The LU Mentality

It is important to interpret formulas that involve the inverse of a matrix in terms of the LU
factorization. Consider the problem of computing

α = cT A−1d,

where A ∈ IRn×n is nonsingular and c, d ∈ IRn. Note that α is a scalar because it is the consequence
of a dot product between the vectors c and A−1d. At first glance, it looks like we actually need
to compute the inverse of A. But the preferred approach is to recognize that A−1d is the solution
to a linear system Ax = d and so

[L,U,piv] = GEpiv(A);

y = LTriSol(L,d(piv));

x = UTriSol(U,y);

alpha = c’*x;

This is more efficient by a factor of 2 because the explicit formation of A−1 requires about 4n3/3
flops.

But a more dramatic payoff for “thinking LU” arises when several linear systems must be
solved that involve the same matrix of coefficients. For example, suppose v(0) is a given n-vector
and that for j = 1:k we want to compute the solution v(j) to the system Av = v(j−1). For
example, if k = 4 we need to solve the systems

Av(1) = v(0)

Av(2) = v(1)

Av(3) = v(2)

Av(4) = v(3)

If we agree to assemble these solutions column by column in a matrix V, we obtain

b = v0;

V = zeros(n,k);

for j=1:k

[L,U,piv] = GEpiv(A);

y = LTriSol(L,b(piv));

V(:,k) = UTriSol(U,y);

b = V(:,k);

end

1The pivoting strategy that we have outlined does not guarantee that the entries in U are small. However, in
practice the algorithm is extremely reliable.

6.3. GENERAL PROBLEMS 231

This approach requires k(2n3/3) flops since there are k applications of GEpiv. On the other hand,
why repeat all the Gaussian elimination operations on A every time through the loop, since they
are independent of k? A much more efficient approach is to factor A once and then “live off
factors” as the linear systems come in the door:

b = v0;

V = zeros(n,k);

[L,U,piv] = GEpiv(A);

for j=1:k

y = LTriSol(L,b(piv));

V(:,k) = UTriSol(U,y);

b = V(:,k);

end

This implementation involves (2n3/3 + O(kn2)) flops.

6.3.6 The Matlab Linear System Tools

The built-in function LU can also be used to compute the PA = LU factorization. A call of the
form

[L,U,P] = LU(A)

returns the lower triangular factor in L, the upper triangular factor in U, and an explicit rep-
resentation of the permutation matrix in P. The command piv = P*(1:n)’ assigns to piv the
same integer vector representation of P that is used in GEpiv. Regarding the \ operation, x =

A\b produces the same x as

[L,U,P] = LU(A);

y = LTriSol(L,P*b);

x = UTriSol(U,y);

The \ operator is “smart enough” to exploit triangular structure and so the last two steps can
be carried out with equal efficiency via

y = L\(P*b);

x = U\y;

Moreover, the \ operator “honors” general sparsity if the matrix of coefficients is established as
a sparse array. Suppose A is tridiagonal but with nonzeros in the first columnn and row. Here is
a script that reports the number of flops required to solve Ax = b via \ for the cases when A is
a regular array and when A is a sparse array:

% Script File: ShowSparseSolve

% Illustrates how the \ operator can exploit sparsity

clc

disp(’ n Flops Full Flops Sparse ’)

disp(’--’)

232 CHAPTER 6. LINEAR SYSTEMS

for n=[25 50 100 200 400 800]

T = randn(n,n)+1000*eye(n,n);

T = triu(tril(T,1),-1); T(:,1) = .1; T(1,:) = .1;

b = randn(n,1);

flops(0); x = T\b; fullFlops = flops;

T_sparse = sparse(T);

flops(0); x = T_sparse\b; sparseFlops = flops;

disp(sprintf(’%10d %10d %10d ’,n,fullFlops,sparseFlops))

end

The results show the number of flops required grows linearly with n if A is a sparse array and
cubically with n otherwise:

n Flops Full Flops Sparse

25 14950 927

50 101150 1878

100 737300 3797

200 5614600 7652

400 43789200 15328

800 345818400 30697

Problems

P6.3.1 Use GEpiv, LTriSol, and UTriSol to compute X ∈ IRn×p so that AX = B, where A ∈ IRn×n is nonsingular
and B ∈ IRn×p.

P6.3.2 Go into ShowGEpiv and modify the interchange strategy so that in the kth step, no interchange is performed
if the current |A(k, k)| is greater than or equal to largest value in α|A(k:n, k)|, where 0 < α ≤ 1. If this is not
the case, the largest value in A(k:n, k) should be swapped into the (k, k) position. Try different values of α and
observe the effect.

P6.3.3 How could GEpiv, LTriSol, and UTriSol be used to compute the (i, i) entry of A−1?

P6.3.4 Assume that A and C are given n-by-n matrices and that A is nonsingular. Assume that g and h are given
n-by-1 vectors. Write a Matlab script that computes n-vectors y and z so that both of the following equations
hold:

AT y + Cz = g

Az = h.

You may use the \ operator. Efficiency matters.

P6.3.5 Assume that A, B, and C are nonsingular n-by-n matrices and that f is an n-by-1 vector. Write an
efficient Matlab fragment that computes a vector x so that ABCx = f .

P6.3.6 Assume that A is a given n-by-n nonsingular matrix and that b and c are given column n-vectors. Write
a Matlab script that computes a scalar α (if possible) so that the solution to Ax = b + αc satisfies x(1) = 0.
Make effective use of GEpiv, LTriSol and UTriSol. If it is not possible to chose α so that x(1) = 0, then the script
should print the message “impossible”.

6.3. GENERAL PROBLEMS 233

P6.3.7 Write a Matlab function [U,L] = UL(A) that computes the “UL” factorization, e.g.,
[

a11 a12 a13

a21 a22 a23

a31 a32 a33

]

=

[

1 u12 u13

0 1 u23

0 0 1

][

`11 0 0
`21 `22 0
0 `32 `33

]

.

You may ignore the possibility of division by zero.

P6.3.8 Complete the following function

function t = Intersect(P,Q,R,S)

% t = Intersect(P,Q,R,S)

% P, Q, R, and S are column 3-vectors.

% and t is a scalar with the property that P + t*Q is a linear combination

% of R and S.

You may assume that such a t exists and you may use the \ operator.

P6.3.9 Implement the following function:

function [u,v] = Lines(a,b,c,d)

%

% a,b,c, and d are column n-vectors with the property that for i=1:n, the lines

%

% x(t1) = a(i) + t1(b(i) - a(i)) -inf < t1 < inf

%

% y(t2) = c(i) + t2(d(i) - c(i)) -inf < t2 < inf

%

% intersect. The points of intersection (u(i),v(i)) are returned in

% column n-vectors u and v.

%

Your implementation should use Gaussian Elimination with partial pivoting to solve for the intersection points.
It should be fully vectorized. (No loops necessary.)

P6.3.10 Suppose a point on the unit sphere has latitude φ and longitude θ. Then the point has Cartesian
coordinates (cos(θ) cos(φ),− sin(θ) cos(φ), sin(φ) and the tangent plane to the sphere at that point is given by

cos(θ) cos(φ)x − sin(θ) cos(φ)y + sin(φ)z = 1.

Implement the following function

function P = Tetra(Lat,Long)

%

% Lat and Long are column 4-vectors that specify the latitude and longitude

% (in degrees) of four distinct points Q1, Q2, Q3, Q4 on the unit sphere.

%

% Let T1, T2, T3 and T4 be the tangent planes to the unit sphere at these points.

%

% Assume that each possible triplet of these planes intersects at a point.

% P is a 4-by-3 matrix whose rows are these intersection points.

You may use the backslash operator “\”. Hint: You should think about how to solve a linear system whose matrix
of coefficients is a permutation matrix.

P6.3.11 Suppose n is a given positive integer and that d is a given n-by-1 vector, B is a given n-by-n matrix, and
A is a given nonsingular n-by-n matrix. Write an efficient Matlab script that computes the scalar z defined by

z = dT BT A−1Bd.

Make effective use of the Matlab function [P,L,U] = LU(A) and the triangular system solvers UTriSol(U,b) and
LTriSol(L,b).

234 CHAPTER 6. LINEAR SYSTEMS

6.4 Analysis

We now turn our attention to the quality of the computed solution produced by Gaussian elimi-
nation with partial pivoting.

6.4.1 Residual Versus Error

Consider the following innocuous linear system:

[

.780 .563

.913 .659

] [

x1

x2

]

=

[

.217

.254

]

.

Suppose we apply two different methods and get two different solutions:

x(1) =

[

.341
−.087

]

x(2) =

[

.999
−1.00

]

.

Which is preferred? An obvious way to compare the two solutions is to compute the associated
residuals:

b−Ax(1) =

[

.000001
0

]

b −Ax(2) =

[

.000780

.000913

]

.

On the basis of residuals, it is clear that x(1) is preferred. However, it is easy to verify that the
exact solution is given by

x(exact) =

[

1
−1

]

,

and this creates a dilemma. We see that x(1) renders a small residual while x(2) is much more
accurate.

Reasoning in the face of such a dichotomy requires an understanding about the context in
which the linear system arises. We may be in a situation where how well Ax predicts b is
paramount. In this case small residuals are important. In other settings, accuracy is critical and
the focus is on nearness to the true solution.

It is clear from the discussion that (1) the notion of a “good” solution can be ambiguous and
(2) the intelligent appraisal of algorithms requires a sharper understanding of the mathematics
behind the Ax = b problem.

6.4.2 Problem Sensitivity and Nearness

In the preceding 2-by-2 problem, the matrix A is very close to singular in the sense that

Ã =

[

.780 .563001095 . . .

.913 .659

]

is exactly singular. Thus an O(10−6) perturbation of the data renders our problem insoluble.
Our intuition tells us that difficulties should arise if our given Ax = b problem is “near” to a
singular Ax = b problem. In that case we suspect that small changes in the problem data (i.e.,
A and b) will induce relatively large changes in the solution. It is clear that we need to quantify
such notions as “nearness to singularity” and “problem sensitivity.”

6.4. ANALYSIS 235

We remark that these issues have nothing to do with the underlying algorithms. They are
mathematical concepts associated with the Ax = b problem. However, these concepts do clarify
what we can expect from an algorithm in light of rounding errors.

To appreciate this point, consider the hypothetical situation in which there is no roundoff
during the entire solution process except when A and b are stored. This means from Theorem 5
that the computed solution x̂ satisfies the perturbed linear system

(A + E)x̂ = b + f, (6.5)

where ‖ E ‖1 ≤ eps‖A ‖1 and ‖ f ‖1 ≤ eps‖ b ‖1. Two fundamental questions arise: How can we
guarantee that A + E is nonsingular, and how close is x̂ to the true solution x? The answer to
both of these questions involves the quantity

κ1(A) = ‖A ‖1 ‖A−1 ‖1

which is called the condition number of A (in the 1-norm). It can be shown that

• κ1(A) ≥ 1.

• κ1(αA) = κ1(A).

• κ1(A) is large if A is close to singular.

The last point is affirmed by the preceding 2-by-2 example.

A =

[

.780 .563

.913 .659

]

⇒ A−1 = 106

[

.659 −.563
−.913 .780

]

⇒ κ1(A) ≈ 106

The following theorem uses the condition number to describe properties of the stored linear
system (6.5).

Theorem 6 Suppose A ∈ IRn×n is nonsingular and that Ax = b, where x, b ∈ IRn. If

eps κ1(A) < 1,

then the stored linear system fl(A)x̂ = fl(b) is nonsingular and

‖ x̂− x ‖1
‖ x ‖1

≤ eps κ1(A)

(

1 +
‖ x̂ ‖1
‖ x ‖1

)

.

Proof From Theorem 5 we know that fl(A) = A+E and fl(b) = b+f , where ‖ E ‖1 ≤ eps ‖A ‖1
and ‖ f ‖1 ≤ eps ‖ b ‖1. If A+E is singular, then there exists a nonzero vector z so (A+E)z = 0.
This implies that z = −A−1Ez, and so

‖ z ‖1 = ‖A−1Ez ‖1 ≤ ‖A−1 ‖1‖ E ‖1‖ z ‖1.

But this contradicts the assumption that eps·κ1(A) < 1 and shows that (A + E)x̂ = b + f is
nonsingular system. Since Ax = b, it follows that A(x̂−x) = f−Ex̂ and so x̂−x = A−1f−A−1Ex̂.
Thus,

‖ x̂− x ‖1 ≤ ‖A−1 ‖1‖ f ‖1 + ‖A−1 ‖1‖ E ‖1‖ x̂ ‖1

≤ eps ‖A−1 ‖1‖ b ‖1 + eps ‖A ‖1‖A−1 ‖1‖ x̂ ‖1.

236 CHAPTER 6. LINEAR SYSTEMS

The theorem is established by dividing both sides by ‖ x ‖1 and observing that

‖ b ‖1
‖ x ‖1

=
‖Ax ‖1
‖ x ‖1

≤
‖A ‖1‖ x ‖1
‖ x ‖1

= ‖A ‖1. 2

There are a number of things to say about this result. To begin with, the factor τ = eps·κ1(A) has
a key role to play. If this quantity is close to 1, then it is appropriate to think of A as numerically

singular. If A is not numerically singular, then it is possible to show that the quotient ‖ x̂ ‖1/‖ x ‖1
contributes little to the upper bound. The main contribution of the theorem is thus to say that
the 1-norm relative error in x̂ is essentially bounded by τ .

In our discussion of Ax = b sensitivity, we have been using the 1-norm. Condition numbers
can also be defined in terms of the other norms mentioned in §5.2.4 on page 184. The 2-norm
condition number can be computed, at some cost, using the function cond. A cheap estimate of
κ1(A) can be obtained with condest.

6.4.3 Backward Stability

It turns out that Gaussian elimination with pivoting produces a computed solution x̂ that satisfies

(A + E)x̂ = b,

where
‖ E ‖ ≈ eps‖A ‖.

(It does not really matter which of the preceding norms we use, so the subscript on the norm
symbol has been deleted.) This says that the Gaussian elimination solution is essentially as good
as the “ideal” solution that we discussed earlier (i.e., x̂ solves a nearby problem exactly).

Two important heuristics follow from this:

‖Ax̂− b ‖ ≈ eps ‖A ‖ ‖ x̂ ‖ (6.6)

‖ x̂− x ‖

‖ x ‖
≈ eps κ(A) (6.7)

The first essentially says that the algorithm produces small residuals compared to the size of A
and x̂. The second heuristic says that if the unit roundoff and condition satisfy eps ≈ 10−t, and
κ1(A) ≈ 10p, then (roughly) x̃ has approximately t − p correct digits.

The function GE2 can be used to illustrate these results. It solves a given 2-by-2 linear system
in simulated three-digit arithmetic. Here is a sample result:

Stored A = .981x10^0 .726x10^0

.529x10^0 .384x10^0

Computed L = .100x10^1 .000x10^0

.539x10^0 .100x10^1

Computed U = .981x10^0 .726x10^0

.000x10^0 -.700x10^-2

6.4. ANALYSIS 237

Exact b = .255x10^0

.145x10^0

Exact Solution = .100x10^1

-.100x10^1

Computed Solution = .110x10^1

-.114x10^1

cond(A) = 2.608e+02

Computed solution solves (A+E)*x = b where

E = 0.001552 -0.001608

0.000377 -0.000391

Note that in this environment, the unit roundoff eps is approximately 10−3. The script file
ShowGE2 can be used to examine further examples.

The Pascal matrices provide another interesting source of test problems. Pascal(n) returns
the n-by-n Pascal matrix, which has integer entries and is increasingly ill conditioned as n grows:

n Condition of Pn

4 6.9e+02
8 2.0e+07

12 8.7e+11
16 4.2e+16

The script file CondEgs examines what happens when Gaussian elimination with pivoting is
applied to a sequence of Pascal linear systems that are set up to have the vector of all ones as
solution. Here is the output for n = 12:

cond(pascal(12)) = 8.7639e+11

True solution is vector of ones.

x =

0.99999998079317

1.00000022061699

0.99999887633133

1.00000337593939

0.99999331477863 Relative error = 4.7636e-06

1.00000919709849 Predicted value = EPS*cond(A) = 1.9460e-04

0.99999100757082

1.00000625939438

0.99999695671209

1.00000098506337

0.99999980884814

1.00000001685318

238 CHAPTER 6. LINEAR SYSTEMS

Notice that − log10(epsκ(Pn)) provides a reasonable upper bound for the number of correct
significant digits in the computed solution.

Another nice feature of the Pascal matrices is that they have determinant 1 for any n. The
preceding discussion confirms the irrelevance of the determinant in matters of linear system
sensitivity and accuracy. The determinant usually figures quite heavily in any introduction to
linear algebra. For example,

det(A) = 0 ⇐⇒ A singular.

It is natural to think that

det(A) ≈ 0 ⇐⇒ A approximately singular.

However, this is not the case. The Pascal example shows that nearly singular matrices can
have determinant 1. Diagonal matrices of the form D = αIn have unit condition number but
determinant αn, further weakening the correlation between determinant size and condition.

Problems

P6.4.1 Gaussian elimination with pivoting is used to solve a 2-by-2 system Ax = b on a computer with machine
precision 10−16. It is known that ‖ A ‖

1
‖ A−1 ‖

1
≈ 1010 and that the exact solution is given by

x =

[

1.234567890123456

.0000123456789012

]

.

Underline the digits in x1 and x2 that can probably agree with the corresponding digits in the computed solution.
Explain the heuristic assumptions used to answer the question.

P6.4.2 It is known that the components of the exact solution to a linear system Ax = b range from 10−1 to
103, and that cond(A) is about 104. What must the machine precision be in order to ensure that the smallest
component of x = A\b has at least five significant digits of accuracy? No proof is necessary, just a reasonable
heuristic argument.

P6.4.3 For n = 2:12, use GEPiv, LTriSol, and UtriSol to compute d(1:n), the diagonal of the inverse of the
n-by-n Hilbert matrix. The built-in Matlab function hilb(n) can be used to set up these matrices. The exact
inverse is obtainable via invhilb(n). Print a table that reports ‖ d − dexact ‖2

/‖ dexact ‖2
for each n-value and

the condition of hilb(n). Submit output and the script used to produce it.

P6.4.4 On a computer with EPS = 10−6, x = A\b has no correct digits. What can you say about the number of
correct significant digits when the same calculation is carried out on a computer with EPS = 10−16?

M-Files and References

Script Files

ShowTri Uses LTriSol to get inverse of Forsythe Matrix.
ShowTriD Illustrates tridiagonal system solving.
ShowHessLU Illustrates Hessenberg LU factorization.
ShowGE Illustrates Gaussian Elimination.
ShowSparseSolve Examines \ with sparse arrays.
NoPivot Illustrates the dangers of no pivoting.
ShowGEPiv Illustrates GEPiv.
ShowGE2 Applies GE2 to three different examples.
CondEgs Accuracy of some ill-conditioned Pascal linear systems.

M-FILES AND REFERENCES 239

Function Files

LTriSol Solves lower triangular system Lx = b.
UTriSol Solves upper triangular system Ux = b.
LTriSolM Solves multiple right-hand-side lower triangular systems.
TriDiLU LU factorization of a tridiagonal matrix.
LBiDiSol Solves lower bidiagonal systems.
UBiDiSol Solves upper bidiagonal systems.
HessLU Hessenberg LU factorization.
GE General LU factorization without pivoting.
GEpiv General LU factorization with pivoting.
GE2 Illustrates 2-by-2 GE in three-digit arithmetic.

References

G.E. Forsythe and C. Moler (1967). Computer Solution of Linear Algebraic Systems, Prentice-
Hall, Englewood Cliffs, NJ.

W.W. Hager (1988). Applied Numerical Linear Algebra, Prentice-Hall, Englewood Cliffs, NJ.

G.W. Stewart (1973). Introduction to Matrix Computations, Academic Press, New York.

G.H. Golub and C.F. Van Loan (1996). Matrix Computations, Third Edition, Johns Hopkins
University Press, Baltimore, MD.

