
Chapter 5

Matrix Computations

§5.1 Setting Up Matrix Problems

§5.2 Matrix Operations

§5.3 Once Again, Setting Up Matrix Problems

§5.4 Recursive Matrix Operations

§5.5 Distributed Memory Matrix Multiplication

The next item on our agenda is the linear equation problem Ax = b. However, before we get
into algorithmic details, it is important to study two simpler calculations: matrix-vector mul-
tiplication and matrix-matrix multiplication. Both operations are supported in Matlab so in
that sense there is “nothing to do.” However, there is much to learn by studying how these com-
putations can be implemented. Matrix-vector multiplications arise during the course of solving
Ax = b problems. Moreover, it is good to uplift our ability to think at the matrix-vector level
before embarking on a presentation of Ax = b solvers.

The act of setting up a matrix problem also deserves attention. Often, the amount of work
that is required to initialize an n-by-n matrix is as much as the work required to solve for x. We
pay particular attention to the common setting when each matrix entry aij is an evaluation of a
continuous function f(x, y).

A theme throughout this chapter is the exploitation of structure. It is frequently the case that
there is a pattern among the entries in A which can be used to reduce the amount of work. The
fast Fourier transform and the fast Strassen matrix multiply algorithm are presented as examples
of recursion in the matrix computations. The organization of matrix-matrix multiplication on a
ring of processors is also studied and gives us a nice snapshot of what algorithm development is
like in a distributed memory environment.

5.1 Setting Up Matrix Problems

Before a matrix problem can be solved, it must be set up. In many applications, the amount
of work associated with the set-up phase rivals the amount of work associated with the solution

168

5.1. SETTING UP MATRIX PROBLEMS 169

phase. Therefore, it is in our interest to acquire intuition about this activity. It is also an occasion
to see how many of Matlab’s vector capabilities extend to the matrix level.

5.1.1 Simple ij Recipes

If the entries in a matrix A = (aij) are specified by simple recipes, such as

aij =
1

i + j − 1
,

then a double-loop script can be used for its computation:

A = zeros(n,n);

for i=1:n

for j=1:n

A(i,j) = 1/(i+j-1);

end

end

Preallocation with zeros(n,n) reduces memory management overhead.
Sometimes the matrix defined has patterns that can be exploited. The preceding matrix is

symmetric since aij = aji for all i and j. This means that the (i, j) recipe need only be applied
half the time:

A = zeros(n,n);

for i=1:n

for j=i:n

A(i,j) = 1/1(i+j-1);

A(j,i) = A(i,j);

end

end

This particular example is a Hilbert matrix, and it so happens that there a built-in function A =

hilb(n) that can be used in lieu of the preceding scripts. Enter the command type hilb to see
a fully vectorized implementation.

The setting up of a matrix can often be made more efficient by exploiting relationships that
exist between the entries. Consider the construction of the lower triangular matrix of binomial
coefficients:

P =

1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1

.

The binomial coefficient “m-choose-k” is defined by

(

m
k

)

=

m!

k!(m− k)!
if 0 ≤ k ≤ m

0 otherwise

.

170 CHAPTER 5. MATRIX COMPUTATIONS

If k ≤ m, then it specifies the number of ways that k objects can be selected from a set of m
objects. The ij entry of the matrix we are setting up is defined by

pij =

(

i− 1
j − 1

)

.

If we simply compute each entry using the factorial definition, then O(n3) flops are involved.
On the other hand, from the 5-by-5 case we notice that P is lower triangular with ones on the
diagonal and in the first column. An entry not in these locations is the sum of its “north” and
“northwest” neighbors. That is,

pij = pi−1,j−1 + pi−1,j.

This permits the following set-up strategy:

P = zeros(n,n);

P(:,1) = ones(n,1);

for i=2:n

for j=2:i

P(i,j) = P(i-1,j-1) + P(i-1,j);

end

end

This script involves O(n2) flops and is therefore an order of magnitude faster than the method
that ignores the connections between the pij.

5.1.2 Matrices Defined by a Vector of Parameters

Many matrices are defined in terms of a vector of parameters. Recall the Vandermonde matrices
from Chapter 2:

V =

1 x1 x2
1 x3

1

1 x2 x2
2 x3

2

1 x3 x2
3 x3

3

1 x4 x2
4 x3

4

.

We developed several set-up strategies but settled on the following column-oriented technique:

n = length(x);

V(:,1) = ones(n,1);

for j=2:n

% Set up column j.

V(:,j) = x.*V(:,j-1);

end

The circulant matrices are also of this genre. They too are defined by a vector of parameters, for
example

C =

a1 a2 a3 a4

a4 a1 a2 a3

a3 a4 a1 a2

a2 a3 a4 a1

.

5.1. SETTING UP MATRIX PROBLEMS 171

Each row in a circulant is a shifted version of the row above it. Here are two circulant set-up
functions:

function C = Circulant1(a)

% C = Circulant1(a) is a circulant matrix with first row equal to a.

n = length(a);

C = zeros(n,n);

for i=1:n

for j=1:n

C(i,j) = a(rem(n-i+j,n)+1);

end

end

function C = Circulant2(a)

% C = Circulant2(a) is a circulant matrix with first row equal to a.

n = length(a);

C = zeros(n,n);

C(1,:) = a;

for i=2:n

C(i,:) = [C(i-1,n) C(i-1,1:n-1)];

end

Circulant1 exploits the fact that cij = a((n−i+j) mod n)+1 and is a scalar-level implementation.
Circulant2 exploits the fact that C(i, :) is a left shift of C(i− 1, :) and is a vector-level imple-
mentation. The script CircBench compares t1 (the time required by Circulant1) with t2 (the
time required by Circulant2):

n t1/t2

100 19.341

200 20.903

400 31.369

Once again we see that it pays to vectorize in Matlab.
Circulant matrices are examples of toeplitz matrices. Toeplitz matrices arise in many appli-

cations and are constant along their diagonals. For example,

T =

c1 r2 r3 r4

c2 c1 r2 r3

c3 c2 c1 r2

c4 c3 c2 c1

.

If c and r are n-vectors, then T = toeplitz(c,r) sets up the matrix

tij =

ci−j i ≥ j

rj−i j > i
.

172 CHAPTER 5. MATRIX COMPUTATIONS

5.1.3 Band Structure

Many important classes of matrices have lots of zeros. Lower triangular matrices

L =

× 0 0 0 0
× × 0 0 0
× × × 0 0
× × × × 0
× × × × ×

,

upper triangular matrices

U =

× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×

,

and tridiagonal matrices

T =

× × 0 0 0
× × × 0 0
0 × × × 0
0 0 × × ×
0 0 0 × ×

are the most important special cases. The ×-0 notation is a handy way to describe patterns of
zeros and nonzeros in a matrix. Each “×” designates a nonzero scalar.

In general, a matrix A = (aij) has lower bandwidth p if aij = 0 whenever i > j + p. Thus, an
upper triangular matrix has lower bandwidth 0 and a tridiagonal matrix has lower bandwidth 1.
A matrix A = (aij) has upper bandwidth q if aij = 0 whenever j > i+ q. Thus, a lower triangular
matrix has upper bandwidth 0 and a tridiagonal matrix has lower bandwidth 1. Here is a matrix
with upper bandwidth 2 and lower bandwidth 3:

A =

× × × 0 0 0 0 0
× × × × 0 0 0 0
× × × × × 0 0 0
× × × × × × 0 0
0 × × × × × × 0
0 0 × × × × × ×
0 0 0 × × × × ×
0 0 0 0 × × × ×

.

Diagonal matrices have upper and lower bandwidth zero and can be established using the
diag function. If d = [10 20 30 40] and D = diag(d), then

D =

10 0 0 0
0 20 0 0
0 0 30 0
0 0 0 40

.

5.1. SETTING UP MATRIX PROBLEMS 173

Two-argument calls to diag are also possible and can be used to reference to the “other” diagonals
of a matrix. An entry aij is on the kth diagonal if j − i = k. To clarify this, here is a matrix
whose entries equal the diagonal values:

0 1 2 3
−1 0 1 2
−2 −1 0 1
−3 −2 −1 0
−4 −3 −2 −1

.

If v is an m-vector, then D = diag(v,k) establishes an (m + k)-by-(m + k) matrix that has a
kth diagonal equal to v and is zero everywhere else. Thus

diag([10 20 30],2) =

0 0 10 0 0
0 0 0 20 0
0 0 0 0 30
0 0 0 0 0
0 0 0 0 0

.

If A is a matrix, then v = diag(A,k) extracts the kth diagonal and assigns it (as a column vector)
to v.

The functions tril and triu can be used to “punch out” a banded portion of a given matrix.
If B = tril(A,k), then

bij =

aij j ≤ i + k

0 j > i + k

.

Analogously, if B = triu(A,k), then

bij =

aij i ≤ j + k

0 i > j + k

.

The command

T = -triu(tril(ones(6,6),1),-1) + 3*eye(6,6)

sets up the matrix

T =

2 −1 0 0 0 0
−1 2 −1 0 0 0

0 −1 2 −1 0 0
0 0 −1 2 −2 0
0 0 0 −1 2 −1
0 0 0 0 −1 2

.

The commands

T = -diag(ones(5,1),-1) + diag(2*ones(6,1),0) - diag(ones(5,1),1)

T = toeplitz([2; -1; zeros(4,1)],[2 ; -1; zeros(4,1)])

do the same thing.

174 CHAPTER 5. MATRIX COMPUTATIONS

5.1.4 Block Structure

The notation

A =

[

a11 a12 a13

a21 a22 a23

]

means that A is a 2-by-3 matrix with entries aij. The aij are understood to be scalars, and
Matlab supports the synthesis of matrices at this level (i.e., A=[a11 a12 a13; a21 a22 a23]).

The notation can be generalized to handle the case when the specified entries are matrices

themselves. Suppose A11, A12, A13, A21, A22, and A23 have the following shapes:

A11 =

u u u
u u u
u u u

 A12 =

v
v
v

 A13 =

w w
w w
w w

A21 =

[

x x x
x x x

]

A22 =

[

y
y

]

A23 =

[

z z
z z

]

.

We then define the 2-by-3 block matrix

A =

[

A11 A12 A13

A21 A22 A23

]

by

A =

u u u v w w
u u u v w w
u u u v w w
x x x y z z
x x x y z z

.

The lines delineate the block entries. Of course, A is also a 5-by-6 scalar matrix.
Block matrix manipulations are very important and can be effectively carried out in Matlab.

The script

A11 = [10 11 12 ; 13 14 15 ; 16 17 18];

A12 = [20 ; 21 ; 22];

A13 = [30 31 ; 32 33 ; 34 35];

A21 = [40 41 42 ; 43 44 45];

A22 = [50 ; 51];

A23 = [60 61 ; 62 63];

A = [A11 A12 A13 ; A21 A22 A23];

results in the formation of

A =

10 11 12 20 30 31
13 14 15 21 32 33
16 17 18 22 34 35
40 41 42 50 60 61
43 44 45 51 62 63

.

The block rows of a matrix are separated by semicolons, and it is important to make sure that the
dimensions are consistent. The final result must be rectangular at the scalar level. For example,

5.1. SETTING UP MATRIX PROBLEMS 175

A = [1 zeros(1,6); ...

zeros(2,1) [10 20;30 40] zeros(2,2); ...

zeros(2,3) [50 60;70 80]]

sets up the matrix

A =

1 0 0 0 0
0 10 20 0 0
0 30 40 0 0
0 0 0 50 60
0 0 0 70 80

.

The extraction of blocks requires the colon notation. The assignment C = A(2:4,5:6) is
equivalent to any of the following:

C = [A(2:4,5) A(2:4,6)]

C = [A(2,5:6) ; A(3,5:6) ; A(4,5:6)]

C = [A(2,5) A(2,6) ; A(3,5) A(3,6) ; A(4,5) A(4,6)]

A block matrix can be conveniently represented as a cell array with matrix entries. Here is
a function that does this when the underlying matrix can be expressed as a square block matrix
with square blocks:

function A = MakeBlock(A_scalar,p)

% A = MakeBlock(A_scalar,p)

% A_scalar is an n-by-n matrix and p divides n. A is an (n/p)-by-(n/p)

% cell array that represents A_scalar as a block matrix with p-by-p blocks.

[n,n] = size(A_scalar);

m = n/p;

A = cell(m,m);

for i=1:m

for j=1:m

A{i,j} = A_scalar(1+(i-1)*p:i*p,1+(j-1)*p:j*p);

end

end

Problems

P5.1.1 For n=[5 10 20 40] and for each of the two methods mentioned in §5.1.1, compute the number of flops
required to set up the matrix P on pages 169-170.

P5.1.2 Give a Matlab one-liner using Toeplitz that sets up a circulant matrix with first row equal to a given
vector a.

P5.1.3 Any Toeplitz matrix can be “embedded” in a larger circulant matrix. For example,

T =

[

c d e
b c d
a b c

]

is the leading 3-by-3 portion of

C =

c d e a b
b c d e a
a b c d e
e a b c d
d e a b c

.

176 CHAPTER 5. MATRIX COMPUTATIONS

Write a Matlab function C = EmbedToep(col,row) that sets up a circulantmatrix with the property that C(1:n,1:n)
= Toeplitz(col,row).

P5.1.4 Write a Matlab function A = RandBand(m,n,p,q) that returns a random m-by-n matrix that has lower
bandwidth p and upper bandwidth q.

P5.1.5 Let n be a positive integer. Extrachromosomal DNA elements called plasmids are found in many types of
bacteria. Assume that in a particular species there is a plasmid P and that exactly n copies of it appear in every
cell. Sometimes the plasmid appears in two slightly different forms. These may differ at just a few points in their
DNA. For example, one type might have a gene that codes for resistance of the cell to the antibiotic ampicillin,
and the other could have a gene that codes for resistance to tetracycline. Let’s call the two variations of the
plasmid A and B.

Assume that the cells in the population reproduce in unison. Here is what happens at that time. The cell
first replicates its DNA matter. Thus, if a cell has one type A plasmid and three type B plasmids, then it now
has two type A plasmids and six type B plasmids. After replication, the cell divides. The two daughter cells will
each receive four of the eight plasmids. There are several possibilities and to describe them we adopt a handy
notation. We say that a cell is (iA, iB) if it has iA type A plasmids and iB type B plasmids. So if the parent is
(1,3), then its daughter will be either (0,4), (1,3), or (2,2).

The probability that a daughter cell is (i′A, i′B) given its parent is (iA, iB) is specified by

Pi′
A

,iA
=

(

2iA
i′A

)(

2iB
i′B

)

(

2n
n

) .

In the numerator you see the number of ways we can partition the parent’s replicated DNA so that the daughter
is (i′A, i′B). The denominator is the total number of ways we can select n plasmids from the replicated set of 2n
plasmids.

Let P (n) be the (n + 1)-by-(n+ 1) matrix whose (i′A, iA) entry is given by Pi′
A

,iA
. (Note subscripting from

zero.) If n = 4, then

P =
1

(

8
4

)

(

0
0

)(

8
4

) (

2
0

)(

6
4

) (

4
0

)(

4
4

) (

6
0

)(

2
4

) (

8
0

)(

0
4

)

(

0
1

)(

8
3

) (

2
1

)(

6
3

) (

4
1

)(

4
3

) (

6
1

)(

2
3

) (

8
1

)(

0
3

)

(

0
2

)(

8
2

) (

2
2

)(

6
2

) (

4
2

)(

4
2

) (

6
2

)(

2
2

) (

8
2

)(

0
2

)

(

0
3

)(

8
1

) (

2
3

)(

6
1

) (

4
3

)(

4
1

) (

6
3

)(

2
1

) (

8
3

)(

0
1

)

(

0
4

)(

8
0

) (

2
4

)(

6
0

) (

4
4

)(

4
0

) (

6
4

)(

2
0

) (

8
4

)(

0
0

)

.

Call this matrix the plasmid transition matrix. Write a Matlab function SetUp(n) that computes the (n+1)-by-
(n + 1) plasmid transition matrix P (n). (You’ll have to adapt the preceding discussion to conform to Matlab’s
subscripting from one requirement.) Exploit structure. If successful, you should find that the number of flops
required is quadratic in n. Print a table that indicates the number of flops required to construct P (n) for
n = 5,6,10,11,20,21,40,41. (See F.C. Hoppenstadt and C.Peskin (1992), Mathematics in Medicine and the Life

Sciences, Springer-Verlag, New York, p.50.)

P5.1.6 Generalize the function MakeBlock to A = MakeBlock(A scalar,m,n), where m and n are vectors of integers
that sum to mA and nA respectively, and [mA,nA] = size(A). A should be a length(mA)-by-length(nA) cell array,
where A{i,j} is a matrix of size mA(i)-by-nA(j).

5.2. MATRIX OPERATIONS 177

5.2 Matrix Operations

Once a matrix is set up, it can participate in matrix-vector and matrix-matrix products. Although
these operations are Matlab one-liners, it is instructive to examine the different ways that they
can be implemented.

5.2.1 Matrix-Vector Multiplication

Suppose A ∈ IRm×n, and we wish to compute the matrix-vector product y = Ax, where x ∈ IRn.
The usual way this computation proceeds is to compute the dot products

yi =

n
∑

j=1

aijxj

one at a time for i = 1:m. This leads to the following algorithm:

[m,n] = size(A);

y = zeros(m,1);

for i = 1:m

for j = 1:n

y(i) = y(i) + A(i,j)*x(j);

end

end

The one-line assignment y = A*x is equivalent and requires 2mn flops.
Even though it is not necessary to hand-code matrix-vector multiplication in Matlab, it is

instructive to reconsider the preceding double loop. In particular, recognizing that the j-loop
oversees an inner product of the ith row of A and the x vector, we have

function y = MatVecR0(A,x)

% y = MatVecRO(A,x)

% Computes the matrix-vector product y = A*x (via saxpys) where

% A is an m-by-n matrix and x is a columnn-vector.

[m,n] = size(A);

y = zeros(m,1);

for i=1:m

y(i) = A(i,:)*x;

end

The colon notation has the effect of highlighting the dot products that make up Az. The procedure
is row oriented because A is accessed by row.

A column-oriented algorithm for matrix-vector products can also be developed. We start with
a 3-by-2 observation:

y = Ax =

1 2
3 4
5 6

[

7
8

]

=

1 · 7 + 2 · 8
3 · 7 + 4 · 8
5 · 7 + 6 · 8

 = 7

1
3
5

+ 8

2
4
6

 =

23
53
83

 .

178 CHAPTER 5. MATRIX COMPUTATIONS

In other words, y is a linear combination of A’s columns with the xj being the coefficients. This
leads us to the following reorganization of MatVecRO:

function y = MatVecC0(A,x)

% y = MatVecCO(A,x)

% This computes the matrix-vector product y = A*x (via saxpys) where

% A is an m-by-n matrix and x is a columnn-vector.

[m,n] = size(A);

y = zeros(m,1);

for j=1:n

y = y + A(:,j)*x(j);

end

In terms of program transformation, this function is just MatVecROwith the i and j loops swapped.
The inner loop now oversees an operation of the form

vector← scalar·vector + vector.

This is known as the saxpy operation. Along with the dot product, it is a key player in matrix
computations. Here is an expanded view of the saxpy operation in MatVecCO:

y(1)
y(2)

...
y(m)

=

A(1, j)
A(2, j)

...
A(m, j)

x(j) +

y(1)
y(2)

...
y(m)

.

MatVecCO requires 2mn flops just like MatVecRO. However, to stress once again the limitations
of flop counting, we point out that in certain powerful computing environments our two matrix-
vector product algorithms may execute at radically different rates. For example, if the matrix
entries aij are stored column by column in memory, then the saxpy version accesses A-entries
that are contiguous in memory. In contrast, the row-oriented algorithm accesses non-contiguous
aij. As a result of that inconvenience, it may require much more time to execute.

5.2.2 Exploiting Structure

In many matrix computations the matrices are structured with lots of zeros. In such a context
it may be possible to streamline the computations. As a first example of this, we examine the
matrix-vector product problem y = Az, where A ∈ IRn×n is upper triangular. The product looks
like this in the n = 4 case:

×
×
×
×

=

× × × ×
0 × × ×
0 0 × ×
0 0 0 ×

×
×
×
×

.

The derivation starts by looking at MatVecRO. Observe that the inner products in the loop

5.2. MATRIX OPERATIONS 179

for i = 1:n

y(i) = A(i,:)*x

end

involve long runs of zeros when A is upper triangular. For example, if n = 7, then the inner
product A(5,:)*x looks like

[

0 0 0 0 0 × ×
]

×
×
×
×
×
×
×

and requires a reduced number of flops because of all the zeros. Thus, we must “shorten” the
inner products so that they only include the nonzero portion of the row.

From the observation that the first i entries in A(i,:) are zero, we see that A(i,i:n)*x(i:n)
is the nonzero portion of the full inner product A(i,:)*x that we need. It follows that

[n,n] = size(A);

y = zeros(n,1);

for i = 1:n

y(i) = A(i,i:n)*z(i:n)

end

is a structure-exploiting upper triangular version of MatVecRO. The assignment to y(i) requires
2i flops, and so overall

n
∑

i=1

(2i) = 2(1 + 2 + · · ·+ n) = n(n + 1)

flops are required. However, in keeping with the philosophy of flop counting, we do not care about
the O(n) term and so we merely state that the algorithm requires n2 flops. Our streamlining
halved the number of floating point operations.

MatVecCO can also be abbreviated. Note that A(:,j) is zero in components j + 1 through n,
and so the “essential” saxpy to perform in the jth step is

y(1)
y(2)

...
y(j)

=

A(1, j)
A(2, j)

...
A(j, j)

x(j) +

y(1)
y(2)

...
y(j)

,

rendering

[n,n] = size(A);

y = zeros(n,1);

for j = 1:n

y(1:j) = A(1:j,j)*x(j) + y(1:j);

end

Again, the number of required flops is halved.

180 CHAPTER 5. MATRIX COMPUTATIONS

5.2.3 Matrix-Matrix Multiplication

If A ∈ IRm×p and B ∈ IRp×n, then the product C = AB is defined by

cij =

p
∑

k=1

aikbkj

for all i and j that satisfy 1 ≤ i ≤ m and 1 ≤ j ≤ n. In other words, each entry in C is the inner
product of a row in A and a column in B. Thus, the fragment

C = zeros(m,n);

for j=1:n

for i=1:m

for k=1:p

C(i,j) = C(i,j) + A(i,k)*B(k,j);

end

end

end

computes the product AB and assigns the result to C. Matlab supports matrix-matrix multi-
plication, and so this can be implemented with the one-liner

C = A*B

However, there are a number of different ways to look at matrix multiplication, and we shall
present four distinct versions.

We start with the recognition that the innermost loop in the preceding script oversees the dot
product between row i of A and column j of B:

function C = MatMatDot(A,B)

% C = MatMatDot(A,B)

% This computes the matrix-matrix product C =A*B (via dot products) where

% A is an m-by-p matrix, B is a p-by-n matrix.

[m,p] = size(A);

[p,n] = size(B);

C = zeros(m,n);

for j=1:n

% Compute j-th column of C.

for i=1:m

C(i,j) = A(i,:)*B(:,j);

end

end

On other hand, we know that the jth column of C equals A times the jth column of B. If we
apply MatVecCO to each of these matrix vector products, we obtain

5.2. MATRIX OPERATIONS 181

function C = MatMatSax(A,B)

% C = MatMatSax(A,B)

% This computes the matrix-matrix product C = A*B (via saxpys) where

% A is an m-by-p matrix, B is a p-by-n matrix.

[m,p] = size(A);

[p,n] = size(B);

C = zeros(m,n);

for j=1:n

% Compute j-th column of C.

for k=1:p

C(:,j) = C(:,j) + A(:,k)*B(k,j);

end

end

This version of matrix multiplication highlights the saxpy operation. By replacing the inner loop
in this with a single matrix-vector product we obtain

function C = MatMatVec(A,B)

% C = MatMatVec(A,B)

% This computes the matrix-matrix product C = A*B (via matrix-vector products)

% where A is an m-by-p matrix, B is a p-by-n matrix.

[m,p] = size(A);

[p,n] = size(B);

C = zeros(m,n);

for j=1:n

% Compute j-th column of C.

C(:,j) = C(:,j) + A*B(:,j);

end

Finally, we observe that a matrix multiplication is a sum of outer products. The outer product

between a column m-vector u and a row n-vector v is given by

uvT =

u1

u2

...
um

[

v1 v2 · · · vn

]

=

u1v1 u1v2 · · · u1vn

u2v1 u2v2 · · · u2vn

...
...

. . .
...

umv1 umv2 · · · umvn

.

Appreciate this as just the ordinary matrix multiplication of an m-by-1 matrix and a 1-by-n
matrix:

10
15
20

[

1 2 3 4
]

=

10 20 30 40
15 30 45 60
20 40 60 80

 .

Returning to the matrix multiplication problem,

C = AB =
[

A(:, 1) A(:, 2) · · · A:, p)
]

B(1, :)
B(2, :)

...
B(p, :)

=

p
∑

k=1

A(:, k)B(k, :).

182 CHAPTER 5. MATRIX COMPUTATIONS

Thus,

1 2
3 4
5 6

[

10 20
30 40

]

=

1
3
5

[

10 20
]

+

2
4
6

[

30 40
]

=

10 20
30 60
50 100

+

60 80
120 160
180 240

=

70 100
150 220
230 340

 .

This leads to the outer product version of matrix multiplication:

function C = MatMatOuter(A,B)

% C = MatMatOuter(A,B)

% This computes the matrix-matrix product C = A*B (via outer products) where

% A is an m-by-p matrix, B is a p-by-n matrix.

[m,p] = size(A);

[p,n] = size(B);

C = zeros(m,n);

for k=1:p

% Add in k-th outer product

C = C + A(:,k)*B(k,:);

end

The script file MatBench benchmarks the four various matrix-multiply functions that we have
developed along with the direct, one-liner C = A*B.

n Dot Saxpy MatVec Outer Direct

--

100 0.8850 1.2900 0.0720 0.5930 0.0220

200 4.1630 5.5750 0.3020 5.3610 0.3080

400 22.4810 33.5050 8.4800 49.8840 3.0920

The most important thing about the table is not the actual values reported but that it shows
the weakness of flop counting. Methods for the same problem that involve the same number
of flops can perform very differently. The nature of the kernel operation (saxpy, dot product,
matrix-vector product, outer product, etc.) is more important than the amount of arithmetic
involved.

5.2.4 Sparse Matrices

For many matrices that arise in practice, the ratio

Number of Nonzero Entries

Number of Zero Entries

5.2. MATRIX OPERATIONS 183

X

X

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

X

X

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

X

X

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

X

X

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

X

.

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

.

X

X

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

X

X

X

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

X

X

X

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

X

X

X

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

X

X

.

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

.

X

X

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

X

X

X

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

X

X

X

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

X

X

X

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

X

X

.

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

.

X

X

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

X

X

X

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

X

X

X

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

X

X

X

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

X

X

.

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

.

X

X

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

X

X

X

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

X

X

X

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

X

X

X

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

X

X

.

.

.

.

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

.

X

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

X

X

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

X

X

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

X

X

X

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

X

.

.

.

X

X

Figure 5.1 A Sparse matrix

is often very small. Matrices with this property are said to be sparse. An important class of
sparse matrices are band matrices, such as the “block” tridiagonal matrix displayed in Figure
5.1. (See §5.1.3 and §5.1.4.) If A is sparse then (a) it can be represented with reduced storage
and (b) matrix-vector products that involve A can be carried out with a reduced number of flops.
For example, if A is an n-by-n tridiagonal matrix then it can be represented with three n-vectors
and when it multiplies a vector only 5n flops are involved. However, this would not be the case
if A is represented as a full matrix. Thus,

A = diag(2*ones(n,1)) - diag(ones(n-1,1),-1) - diag(ones(n-1,1),1);

y = A*rand(n,1);

involves O(n2) storage and O(n2) flops.
The sparse function addresses these issues in Matlab . If A is a matrix then S A = sparse(A)

produces a sparse array representation of A. The sparse array S A can be engaged in the same ma-
trix operations as A and Matlab will exploit the underlying sparse structure whenever possible.
Consider the script

A = diag(2*ones(n,1)) - diag(ones(n-1,1),-1) - diag(ones(n-1,1),1);

S_A = sparse(A);

y = S_A*rand(n,1);

The representation S A involves O(n) storage and the product y = S A*rand(n,1) O(n) flops.
The script ShowSparse looks at the flop efficiency in more detail and produces the plot shown
in Figure 5.2 (on the next page). There are more sophisticated ways to use sparse which the
interested reader can pursue via help.

184 CHAPTER 5. MATRIX COMPUTATIONS

100 200 300 400 500 600 700 800 900 1000
10

2

10
3

10
4

10
5

10
6

10
7

n

(Tridiagonal A) × (Vector)

Flops with Full A
Flops with Sparse A

Figure 5.2 Exploiting sparsity

5.2.5 Error and Norms

We conclude this section with a brief look at how errors are quantified in the matrix computation
area. The concept of a norm is required. Norms are a vehicle for measuring distance in a vector
space. For vectors x ∈ IRn, the 1, 2, and infinity norms are of particular importance:

‖ x ‖1 = |x1| + · · ·+ |xn|

‖ x ‖2 =
√

x2
1 + · · ·+ x2

n

‖ x ‖∞ = max{|x1|, . . . , |xn|}

A norm is just a generalization of absolute value. Whenever we think about vectors of errors in
an order-of-magnitude sense, then the choice of norm is generally not important. It is possible
to show that

‖ x ‖
∞
≤ ‖ x ‖1 ≤ n ‖ x ‖

∞

‖ x ‖
∞
≤ ‖ x ‖2 ≤ √

n ‖ x ‖
∞

.

Thus, the 1-norm cannot be particularly small without the others following suit.
In Matlab, if x is a vector, norm(x,1), norm(x,2), and norm(x,inf) can be used to ascertain

these quantities. A single-argument call to norm returns the 2-norm (e.g., norm(x)). The script

5.2. MATRIX OPERATIONS 185

AveNorms tabulates the ratios ‖ x ‖1/‖ x ‖
∞

and ‖ x ‖2/‖ x ‖
∞

for large collections of random
n-vectors.

The idea of a norm extends to matrices and, as in the vector case, there are number of
important special cases. If A ∈ IRm×n, then

‖A ‖1 = max
1≤j≤n

m
∑

i=1

|aij| ‖A ‖2 = max
‖ x ‖

2
=1

‖Ax ‖2

‖A ‖∞ = max
1≤i≤m

n
∑

j=1

|aij| ‖A ‖F =

√

√

√

√

m
∑

i=1

n
∑

j=1

|aij|2

In Matlab if A is a matrix, then norm(A,1), norm(A,2), norm(A,inf), and norm(A,’fro’) can
be used to compute these values. As a simple illustration of how matrix norms can be used to
quantify error at the matrix level, we prove a result about the roundoff errors that arise when an
m-by-n matrix is stored.

Theorem 5 If Â is the stored version of A ∈ IRm×n, then Â = A + E where E ∈ IRm×n and

‖ E ‖1 ≤ eps ‖A ‖1.

Proof From Theorem 1, if Â = (âij), then

âij = fl(aij) = aij(1 + εij),

where |εij| ≤ eps . Thus,

‖ E ‖1 = ‖ Â −A ‖1 = max
1≤j≤n

m
∑

i=1

|âij − aij|

≤ max
1≤j≤n

m
∑

i=1

|aijεij| ≤ eps max
1≤j≤n

m
∑

i=1

|aij| = eps ‖A ‖1. 2

This says that errors of order eps‖A ‖1 arise when a real matrix A is stored in floating point.
There is nothing special about our choice of the 1-norm. Similar results apply for the other norms
defined earlier.

When the effect of roundoff error is the issue, we will be content with order-of-magnitude
approximation. For example, it can be shown that if A and B are matrices of floating point
numbers, then

‖ fl(AB) −AB ‖ ≈ eps‖A ‖‖B ‖.

By fl(AB) we mean the computed, floating point product of A and B. The result says that the
errors in the computed product are roughly the product of the unit roundoff eps, the size of the
numbers in A, and the size of the numbers in B. The following script confirms this result:

186 CHAPTER 5. MATRIX COMPUTATIONS

% Script File: ProdBound

% Examines the error in 3-digit matrix multiplication.

clc

eps3 = .005; % 3-digit machine precision

nRepeat = 10; % Number of trials per n-value

disp(’ n 1-norm factor ’)

disp(’------------------------’)

for n = 2:10

s = 0;

for r=1:nRepeat

A = randn(n,n);

B = randn(n,n);

C = Prod3Digit(A,B);

E = C - A*B;

s = s+ norm(E,1)/(eps3*norm(A,1)*norm(B,1));

end

disp(sprintf(’%4.0f %8.3f ’,n,s/nRepeat))

end

The function Prod3Digit(A,B) returns the product AB computed using simulated three-digit
floating point arithmetic developed in §1.6.1. The result is compared to the “exact” product
obtained by using the prevailing, full machine precision. Here are some sample results:

n 1-norm factor

2 0.323

3 0.336

4 0.318

5 0.222

6 0.231

7 0.227

8 0.218

9 0.207

10 0.218

Problems

P5.2.1 Suppose A ∈ IRn×n has the property that aij is zero whenever i > j + 1. Write an efficient, row-oriented
dot product algorithm that computes y = Az.

P5.2.2 Suppose A ∈ IRm×n is upper triangular and that x ∈ IRn. Write a Matlab fragment for computing the
product y = Ax. (Do not make assumptions like m ≥ n or m ≤ n.)

P5.2.3 Modify MatMatSax so that it efficiently handles the case when B is upper triangular.

P5.2.4 Modify MatMatSax so that it efficiently handles the case when both A and B are upper triangular and
n-by-n.

5.2. MATRIX OPERATIONS 187

P5.2.5 Modify MatMatDot so that it efficiently handles the case when A is lower triangular and B are upper
triangular and both are n-by-n.

P5.2.6 Modify MatMatSax so that it efficiently handles the case when B has upper and lower bandwidth p. Assume
that both A and B are n-by-n.

P5.2.7 Write a function B = MatPower(A,k) so that computes B = Ak, where A is a square matrix and k is a
nonnegative integer. Hint: First consider the case when k is a power of 2. Then consider binary expansions (e.g.,
A29 = A16A8A4A).

P5.2.8 Develop a nested multiplication for the product y = (c1I +c2A+ · · ·+ckAk−1)v, where the ci are scalars,
A is a square matrix, and v is a vector.

P5.2.9 Write a Matlab function that returns the matrix

C =
[

B AB A2B · · · Ap−1B
]

,

where A is n-by-n, B is n-by-t, and p is a positive integer.

P5.2.10 Write a Matlab function ScaleRows(A,d) that assumes A is m-by-n and d is m-by-1 and multiplies the
ith row of A by d(i).

P5.2.11 Let P (n) be the matrix of P5.1.2. If v is a plasmid state vector, then after one reproductive cycle, P (n)v
is the state vector for the population of daughters. A vector v(0:n) is symmetric if v(n:−1:0) = v. Thus [2;5;6;5;2]
and [3;1;1;3] are symmetric.) Write a Matlab function V = Forward(P,v0,k) that sets up a matrix V with k
rows. The kth row of V should be the transpose of the vector Pkv0. Assume v0 is symmetric.

P5.2.12 A matrix M is tridiagonal if mij = 0 whenever |i − j| > 1. Write a Matlab function C = Prod(A,B)

that computes the product of an n-by-n upper triangular matrix A and an n-by-n tridiagonal matrix B. Your
solution should be efficient (no superfluous floating point arithmetic) and vectorized.

P5.2.13 Make the following function efficient from the flop point of view and vectorize.

function C = Cross(A)

% A is n-by-n and with A(i,j) = 0 whenever i>j+1

% C = A^{T}*A

[n,n] = size(A);

C = zeros(n,n);

for i=1:n

for j=1:n

for k=1:n

C(i,j) = C(i,j) + A(k,i)*A(k,j);

end

end

end

P5.2.14 Assume that A, B, and C are matrices and that the product ABC is defined. Write a flop-efficient
Matlab function D = ProdThree(A,B,C) that returns their product.

P5.2.15 (Continuation of P5.1.6.) Write a matrix-vector product function y = BlockMatVec(A,x) that computes
y = Ax but where A is a cell array that represents the underlying matrix as a block matrix.

P5.2.16 Write a function v = SparseRep(A) that takes an n-by-n matrix A and returns a length n array v, with
the property that v(i).jVals is a row vector of indices that name the nonzero entries in A(i,:) and v(i).aVals

is the row vector of nonzero entries from A(i,:). Write a matrix-vector product function that works with this
representation. (Review the function find for this problem.)

188 CHAPTER 5. MATRIX COMPUTATIONS

5.3 Once Again, Setting Up Matrix Problems

On numerous occasions we have been required to evaluate a continuous function f(x) on a vector
of values (e.g., sqrt(linspace(0,9))). The analog of this in two dimensions is the evaluation
of a function f(x, y) on a pair of vectors x and y.

5.3.1 Two-Dimensional Tables of Function Values

Suppose f(x, y) = exp−(x2+3y2) and that we want to set up an n-by-n matrix F with the property
that

fij = e−(x2
i +3y2

j),

where xi = (i − 1)/(n − 1) and yj = (j − 1)/(n − 1). We can proceed at the scalar, vector, or
matrix level. At the scalar level we evaluate exp at each entry:

v = linspace(0,1,n);

F = zeros(n,n);

for i=1:n

for j=1:n

F(i,j) = exp(-(v(i)^2 + 3*v(j)^2));

end

end

At the vector level we can set F up by column:

v = linspace(0,1,n)’;

F = zeros(n,n);

for j=1:n

F(:,j) = exp(-(v.^2 + 3*v(j)^2));

end

Finally, we can even evaluate exp on the matrix of arguments:

v = linspace(0,1,n);

A = zeros(n,n);

for i=1:n

for j=1:n

A(i,j) = -(v(i)^2 + 3*v(j)^2);

end

end

F = exp(A);

Many of Matlab’s built-in functions, like exp, accept matrix arguments. The assignment F =

exp(A) sets F to be a matrix that is the same size as A with fij = eaij for all i and j.
In general, the most efficient approach depends on the structure of the matrix of arguments,

the nature of the underlying function f(x, y), and what is already available through M-files.
Regardless of these details, it is best to be consistent with Matlab’s vectorizing philosophy
designing all functions so that they can accept vector arguments. For example,

5.3. ONCE AGAIN, SETTING UP MATRIX PROBLEMS 189

function F = SampleF(x,y)

% x is a column n-vector, y is a column m-vector and

% F is an m-by-n matrix with F(i,j) = exp(-(x(j)^2 + 3y(i)^2)).

n = length(x);

m = length(y);

A = -((2*y.^2)*ones(1,n) + ones(m,1)*(x.^2)’)/4;

F = exp(A);

Notice that the matrix A is the sum of two outer products and that aij = −(x2
j + 2y2

i)/4. The
setting up of this grid of points allows for a single (matrix-valued) call to exp.

5.3.2 Contour Plots

While the discussion of tables is still fresh, we introduce the Matlab’s contour plotting capability.
If f(x, y) is a function of two real variables, then a curve in the xy-plane of the form f(x, y) = c
is a contour. The function contour can be used to display such curves. Here is a script that
displays various contour plots of the function SampleF:

% Script File: ShowContour

% Illustrates various contour plots.

close all

% Set up array of function values.

x = linspace(-2,2,50)’;

y = linspace(-1.5,1.5,50)’;

F = SampleF(x,y);

% Number of contours set to default value:

figure

Contour(x,y,F)

axis equal

% Five contours:

figure

contour(x,y,F,5);

axis equal

% Five contours with specified values:

figure

contour(x,y,F,[1 .8 .6 .4 .2])

axis equal

% Four contours with manual labeling:

figure

c = contour(x,y,F,4);

clabel(c,’manual’);

axis equal

190 CHAPTER 5. MATRIX COMPUTATIONS

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

0.295

0.647

0.823

0.471

Figure 5.3 A contour plot

Contour(x,y,F) assumes that F(i,j) is the value of the underlying function f at (xj, yi).
Clearly, the length of x and the length of y must equal the column and row dimension of F.
The argument after the array is used to supply information about the number of contours and
the associated “elevations.” Contour(x,y,F,N) specifies N contours. Contour(x,y,F,v), where
v is a vector, specifies elevations v(i), where i=1:length(v). The contour elevations can be
labeled using the mouse by the command sequence of the form

c = contour(x,y,F,...);

clabel(c,’manual’);

Type help clabel for more details. A sample labeled contour plot of the function SampleF is
shown in Figure 5.3. See the script ShowContour.

5.3.3 Spotting Matrix-Vector Products

Let us consider the problem of approximating the double integral

I =

∫ b

a

∫ d

c

f(x, y)dy dx

using a quadrature rule of the form

∫ b

a

g(x)dx ≈ (b− a)

Nx
∑

i=1

ωig(xi) ≡ Qx

5.3. ONCE AGAIN, SETTING UP MATRIX PROBLEMS 191

in the x-direction and a quadrature rule of the form

∫ d

c

g(y)dy ≈ (d− c)

Ny
∑

j=1

µjg(yj) ≡ Qy

in the y-direction. Doing this, we obtain

I =

∫ b

a

(

∫ d

c

f(x, y)dy

)

dx ≈ (b− a)

Nx
∑

i=1

ωi

(

∫ d

c

f(xi, y)dy

)

≈ (b− a)

Nx
∑

i=1

ωi

(d− c)

Ny
∑

j=1

µjf(xi, yj)

= (b− a)(d− c)

Nx
∑

i=1

ωi

Ny
∑

j=1

µjf(xi, yj)

 ≡ Q.

Observe that the quantity in parentheses is the ith component of the vector Fµ, where

F =

f(x1, y1) · · · f(x1, yNy
)

...
. . .

...
f(xNx

, y1) · · · f(xNx
, yNy)

and µ =

µ1

...
µNy

.

It follows that
Q = (b− a)(d− c)ωT (Fµ),

where

ω =

ω1

...
ωNx

.

If Qx and Qy are taken to be composite Newton-Cotes rules, then we obtain the following
implementation:

function numI2D = CompQNC2D(fname,a,b,c,d,mx,nx,my,ny)

% numI2D = CompQNC2D(fname,a,b,c,d,mx,nx,my,ny)

%

% fname is a string that names a function of the form f(x,y).

% If x and y are vectors, then it should return a matrix F with the

% property that F(i,j) = f(x(i),y(j)), i=1:length(x), j=1:length(y).

%

% a,b,c,d are real scalars.

% mx and my are integers that satisfy 2<=mx<=11, 2<=my<=11.

% nx and ny are positive integers

%

% numI2D approximation to the integral of f(x,y) over the rectangle [a,b]x[c,d].

% The compQNC(mx,nx) rule is used in the x-direction and the compQNC(my,ny)

192 CHAPTER 5. MATRIX COMPUTATIONS

% rule is used in the y-direction.

[omega,x] = CompNCweights(a,b,mx,nx);

[mu,y] = CompNCweights(c,d,my,ny);

F = feval(fname,x,y);

numI2D = (b-a)*(d-c)*(omega’*F*mu);

The function CompNCweights uses NCweights from Chapter 4 and sets up the vector of weights
and the vector of abscissas for the composite m-point Newton-Cotes rule. The script

% Script File: Show2DQuad

% Integral of SampleF2 over [0,2]x[0,2] for various 2D composite

% QNC(7) rules.

clc

m = 7;

disp(’ Subintervals Integral Time’)

disp(’--’)

for n = [32 64 128 256]

tic, numI2D = CompQNC2D(’SampleF2’,0,2,0,2,m,n,m,n); time = toc;

disp(sprintf(’ %7.0f %17.15f %11.4f’,n,numI2D,time))

end

benchmarks this function when it is applied to

I =

∫ 2

0

∫ 2

0

(

1

((x− .3)2 + .1)((y − .4)2 + .1)
+

1

((x − .7)2 + .1)((y − .3)2 + .1)

)

dy dx.

The integrand function is implemented in SampleF2. Here are the results:

Subintervals Integral Relative Time

--

32 46.220349653054726 0.1100

64 46.220349653055095 0.3300

128 46.220349653055102 1.7000

256 46.220349653055109 5.0500

For larger values of n we would find that the amount of computation increases by a factor of 4
with a doubling of n reflecting the O(n2) nature of the calculation.

Problems

P5.3.1 Modify CompQNC2D so that it computes and uses F row at a time. The implementation should not require
a two-dimensional array.

P5.3.2 Suppose we are given an interval [a, b], a Kernel function K(x, y) defined on [a, b] × [a, b], and another
function g(x) defined on [a, b]. Our goal is to find a function f(x) with the property that

∫ b

a

K(x, y)f(y)dy = g(x) a ≤ x ≤ b.

5.3. ONCE AGAIN, SETTING UP MATRIX PROBLEMS 193

Suppose Q is a quadrature rule of the form

Q = (b− a)

N
∑

j=1

ωjs(xj)

that approximates integrals of the form

I =

∫ b

a

s(x)dx.

(The ωj and xj are the weights and abscissas of the rule.) We can then replace the integral in our problem with

(b− a)

N
∑

j

ωjK(x, xj)f(xj) = g(x).

If we force this equation to hold at x = x1, . . . , xN , then we obtain an N -by-N linear system:

(b− a)

N
∑

j=1

ωjK(xi, xj)f(xj) = g(xi) i = 1:N

in the N unknowns f(xj), j = 1:N .
Write a Matlab function Kmat = Kernel(a,b,m,n,sigma) that returns the matrix of coefficients defined by

this method, where Q is the composite m-point Newton-Cotes rule with n equal subintervals across [a, b] and

K(x, y) = e−(x−y)2/σ . Be as efficient as possible, avoiding redundant exp evaluations.
Test this solution method with a = 0, b = 5, and

g(x) =
1

(x− 2)2 + .1
+

1

(x− 4)2 + .2
.

For σ = .01, plot the not-a-knot spline interpolant of the computed solution (i.e., the (xi, f(xi)). Do this for the
four cases (m, n) = (3,5), (3,10), (5,5), (5,10). Use subplot(2,2,*). For each subplot, print the time required by
your computer to execute Kernel. Repeat with σ = .1.

P5.3.3 The temperature at selected points around the edge of a rectangular plate is known. Our goal is to
estimate the temperature T = T (x, y) at selected interior points. In the following figure we depict the points of
known temperature by ’o’ and the points of unknown temperature by ’+’:

A reasonable model (whose details we suppress) suggests that the temperature at a ’+’ point is the average of its
four neighbors. (The “north”, “east”, “south” and “west” neighbors.) Usually the four neighbors are ’+’ points.
However, for a ’+’ point near the edge, one or two of the neighbors is an ’o’ point.

194 CHAPTER 5. MATRIX COMPUTATIONS

In the figure, the array of ’+’ points has m = 7 rows and n = 15 columns. There are thus mn unknown
temperatures t1, . . . , tmn. We associate these unknowns with the ’+’ points in left-to-right, top-to-bottom order,
the order in which we read a page of English text. Let’s look at the “averaging” equation at the 37th ’+’ point.
This is the 7th ’+’ point in the 3rd row (counting rows from the top). First, we figure out who the neighbors are:

• The north neighbor is the 7th ’+’ point in the 2nd row. (index = 22 = 37-15)

• The west neighbor is the 6th ’+’ point in the 3rd row. (index = 36 = 37-1)

• The east neighbor is the 8th ’+’ point in the 3rd row. (index = 38 = 37+1)

• The south neighbor is the 7th ’+’ point in the 4th row. (index = 52 = 37+15)

Having done that, to say that the temperature at the 37th ’+’ point is the average of the four neighbor temperatures
is to say that

−t22 − t36 + 4t37 − t38 − t52 = 0.

This is a linear equation in five unknowns. Equations associated with ’+’ points that are next to an edge are
similar except that known edge temperatures are involved. For example, the equation at the 5th star point is
given by

−t4 + 4t5 − t6 − t20 = north5,

where north5 is the (known) temperature at the 5th ’o’ point along the top edge. This is a linear equation that
involves four of the unknowns.

Thus, the vector of unknowns t solves an mn-by-mn linear system of the form At = b. Write a Matlab function
[A,b] = Poisson(m,n) that returns the solution to this system. Assume that the known west edge and east edge
temperatures are zero and that the north (top) and south (bottom) edge temperatures are given by

x = linspace(0,2,n+2);

fnorth = sin((pi/2)*x)*exp(-x);

north = fnorth(2:n+1);

south = north(n:-1:1);

Use \ to solve the linear system. Print A and b for the case m = 3, n = 4. For the case m = 7, n = 15, submit the
contour plot cs = contour(Tmatrix,10); clabel(cs) where Tmatrix is the m-by-n matrix obtained by breaking
up the solution vector into length n subvectors and stacking them row-by-row. That is, if t = 1:12, m = 3, and
n = 4, then

Tmatrix =

[

1 2 3 4
5 6 7 8
9 10 11 12

]

.

Set axis off in your contour plot since the xy coordinates are not of particular interest to us in this problem.

5.4 Recursive Matrix Operations

Some of the most interesting algorithmic developments in matrix computations are recursive.
Two examples are given in this section. The first is the fast Fourier transform, a super-quick way
of computing a special, very important matrix-vector product. The second is a recursive matrix
multiplication algorithm that involves markedly fewer flops than the conventional algorithm.

5.4.1 The Fast Fourier Transform

The discrete Fourier transform (DFT) matrix is a complex Vandermonde matrix. Complex
numbers have the form a + i · b, where i =

√
−1. If we define

ω4 = exp(−2πi/4) = cos(2π/4)− i · sin(2π/4) = −i,

then the 4-by-4 DFT matrix is given by

5.4. RECURSIVE MATRIX OPERATIONS 195

F4 =

1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4

.

The parameter ω4 is a fourth root of unity, meaning that ω4
4 = 1. It follows that

F4 =

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

.

Matlab supports complex matrix manipulation. The commands

i = sqrt(-1);

F = [1 1 1 1; 1 -i -1 i; 1 -1 1 -1; 1 i -1 -i]

assign the 4-by-4 DFT matrix to F.
For general n, the DFT matrix is defined in terms of

ωn = exp(−2πi/n) = cos(2π/n)− i · sin(2π/n).

In particular, the n-by-n DFT matrix is defined by

Fn = (fpq), fpq = ω(p−1)(q−1)
n .

Setting up the DFT matrix gives us an opportunity to sample Matlab’s complex arithmetic
capabilities:

F = ones(n,n);

F(:,2) = exp(-2*pi*sqrt(-1)/n).^(0:n-1)’;

for k=3:n

F(:,k) = F(:,2).*F(:,k-1);

end

There is really nothing new here except that the generated matrix entries are complex with
the involvement of

√
−1. The real and imaginary parts of a matrix can be extracted using the

functions real and imag. Thus, if F = FR + i · FI and x = xR + i · xI , where FR, FI , xR, and
xI are real, then

y = F*x

is equivalent to

FR = real(F); FI = imag(F);

xR = real(x); xI = imag(x);

y = (FR*xR - FI*xI) + sqrt(-1)*(FR*xI + FI*xR);

196 CHAPTER 5. MATRIX COMPUTATIONS

because

y = (FRxR − FIxI) + i · (FRxI + FI ∗ xR).

Many of Matlab’s built-in functions like exp, accept complex matrix arguments. When complex
computations are involved, flops counts real flops. Note that complex addition requires two real
flops and that complex multiplication requires six real flops.

Returning to the DFT, it is possible to compute y = Fnx without explicitly forming the DFT
matrix Fn:

n = length(x);

y = x(1)*ones(n,1);

for k=2:n

y = y + exp(-2*pi*sqrt(-1)*(k-1)*(0:n-1)’) *x(k);

end

The update carries out the saxpy computation

y =

1
ωk−1

n

ω
2(k−1)
n

...

ω
(n−1)(k−1)
n

xk.

Notice that since ωn
n = 1, all powers of ωn are in the set {1, ωn, ω2

n, . . . , ωn−1
n }. In particular,

ωm
n = ωm mod n

n . Thus, if

v = exp(-2*pi*sqrt(-1)/n)^(0:n-1)’;

z = rem((k-1)*(0:n-1)’,n) +1;

then v(z) equals the kth column of Fn and we obtain

function y = DFT(x)

% y = DFT(x)

% y is the discrete Fourier transform of a column n-vector x.

n = length(x);

y = x(1)*ones(n,1);

if n > 1

v = exp(-2*pi*sqrt(-1)/n).^(0:n-1)’;

for k=2:n

z = rem((k-1)*(0:n-1)’,n)+1;

y = y + v(z)*x(k);

end

end

This is an O(n2) algorithm. We now show how to obtain an O(n log2 n) implementation by
exploiting the structure of Fn.

5.4. RECURSIVE MATRIX OPERATIONS 197

The starting point is to look at an even order DFT matrix when we permute its columns so
that the odd-indexed columns come first. Consider the case n = 8. Noting that ωm

8 = ωm mod 8
n ,

we have

F8 =

1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω

,

where ω = ω8. If cols = [1 3 5 7 2 4 6 8], then

F8(:, cols) =

1 1 1 1 1 1 1 1
1 ω2 ω4 ω6 ω ω3 ω5 ω7

1 ω4 1 ω4 ω2 ω6 ω2 ω6

1 ω6 ω4 ω2 ω3 ω ω7 ω5

1 1 1 1 −1 −1 −1 −1
1 ω2 ω4 ω6 −ω −ω3 −ω5 −ω7

1 ω4 1 ω4 −ω2 −ω6 −ω2 −ω6

1 ω6 ω4 ω2 −ω3 −ω −ω7 −ω5

.

The lines through the matrix help us think of the matrix as a 2-by-2 matrix with 4-by-4 “blocks.”
Noting that ω2 = ω2

8 = ω4 we see that

F8(:, cols) =

[

F4 DF4

F4 −DF4

]

,

where

D =

1 0 0 0
0 ω 0 0
0 0 ω2 0
0 0 0 ω3

.

It follows that if x is an 8-vector, then

F8x = F (:, cols)x(cols) =

[

F4 DF4

F4 −DF4

] [

x(1:2:8)
x(2:2:8)

]

=

[

I D
I −D

] [

F4x(1:2:8)
F4x(2:2:8)

]

.

Thus, by simple scalings we can obtain the eight-point DFT y = F8x from the four-point DFTs
yT = F4x(1:2:8) and yB = F4x(2:2:8):

y(1:4) = yT + d .∗ yB

y(5:8) = yT − d .∗ yB

where d is the following “vector of weights” d =
[

1 ω ω2 ω3
]T

. In general, if n = 2m, then
y = Fnx is given by

y(1:m) = yT + d .∗ yB

y(m + 1:n) = yB − d .∗ yB ,

198 CHAPTER 5. MATRIX COMPUTATIONS

where yT = Fmx(1:2:n), yB = Fmx(2:2:n), and

d =

1
ω
...

ωm−1
n

.

For n = 2t we can recur on this process until n = 1. (The one-point DFT of a one-vector is
itself). This gives

function y = FFTRecur(x)

% y = FFTRecur(x)

% y is the discrete Fourier transform of a column n-vector x where

% n is a power of two.

n = length(x);

if n ==1

y = x;

else

m = n/2;

yT = FFTRecur(x(1:2:n));

yB = FFTRecur(x(2:2:n));

d = exp(-2*pi*sqrt(-1)/n).^(0:m-1)’;

z = d.*yB;

y = [yT+z ; yT-z];

end

This is a member of the fast Fourier transform (FFT) family of algorithms. They involve
O(n log2 n) flops. We have illustrated a radix-2 FFT. It requires n to be a power of 2. Other
radices are possible. Matlab includes a radix-2 fast Fourier transform FFT. (See also DFTdirect.)
The script FFTflops tabulates the number of flops required by DFT, FFTrecur, and FFT:

n DFT FFTrecur FFT

Flops Flops Flops

--

2 87 40 16

4 269 148 61

8 945 420 171

16 3545 1076 422

32 13737 2612 986

64 54089 6132 2247

128 214665 14068 5053

256 855305 31732 11260

512 3414537 70644 24900

1024 13644809 155636 54677

The reason that FFTrecur involves more flops than FFT concerns the computation of the “weight
vector” d. As it stands, there is a considerable amount of redundant computation with respect

5.4. RECURSIVE MATRIX OPERATIONS 199

to the exponential values that are required. This can be avoided by precomputing the weights,
storing them in a vector, and then merely “looking up” the values as they are needed during the
recursion. With care, the amount of work required by a radix-2 FFT is 5n log2 n flops.

5.4.2 Strassen Multiplication

Ordinarily, 2-by-2 matrix multiplication requires eight multiplications and four additions:

[

C11 C12

C21 C22

]

=

[

C11 A12

A21 A22

] [

B11 B12

B21 B22

]

=

[

A11B11 + A12B21 A11B12 + A12B22

A21b11 + A22B21 A21b12 + A22B22

]

.

In the Strassen multiplication scheme, the computations are rearranged so that they involve seven
multiplications and 18 additions:

P1 = (A11 + A22)(B11 + B22)
P2 = (A21 + A22)B11

P3 = A11(B12 −B22)
P4 = A22(B21 −B11)
P5 = (A11 + A12)B22

P6 = (A21 − A11)(B11 + B12)
P7 = (A12 − A22)(B21 + B22)
C11 = P1 + P4 − P5 + P7

C12 = P3 + P5

C21 = P2 + P4

C22 = P1 + P3 − P2 + P6

It is easy to verify that these recipes correctly define the product AB. However, why go through
these convoluted formulas when ordinary 2-by-2 multiplication involves just eight multiplies and
four additions? To answer this question, we first observe that the Strassen specification holds
when the Aij and Bij are square matrices themselves. In this case, it amounts to a special method
for computing block 2-by-2 matrix products. The seven multiplications are now m-by-m matrix
multiplications and require 2(7m3) flops. The 18 additions are matrix additions and they involve
18m2 flops. Thus, for this block size the Strassen multiplication requires

2(7m3) + 18m2 =
7

8
(2n3) +

9

2
n2

flops while the corresponding figure for the conventional algorithm is given by 2n3 − n2. We see
that for large enough n, the Strassen approach involves less arithmetic.

The idea can obviously be applied recursively. In particular, we can apply the Strassen
algorithm to each of the half-sized block multiplications associated with the Pi. Thus, if the
original A and B are n-by-n and n = 2q, then we can recursively apply the Strassen multiplication
algorithm all the way to the 1-by-1 level. However, for small n the Strassen approach involves
more flops than the ordinary matrix multiplication algorithm, Therefore, for some nmin ≥ 1
it makes sense to “switch over” to the standard algorithm. In the following implementation,
nmin = 16:

200 CHAPTER 5. MATRIX COMPUTATIONS

function C = Strass(A,B,nmin)

% C = Strass(A,B,nmin)

% This computes the matrix-matrix product C = A*B (via the Strassen Method) where

% A is an n-by-n matrix, B is a n-by-n matrix and n is a power of two. Conventional

% matrix multiplication is used if n<nmin where nmin is a positive integer.

[n,n] = size(A);

if n < nmin

C = A*B;

else

m = n/2; u = 1:m; v = m+1:n;

P1 = Strass(A(u,u)+A(v,v),B(u,u)+B(v,v),nmin);

P2 = Strass(A(v,u)+A(v,v),B(u,u),nmin);

P3 = Strass(A(u,u),B(u,v)-B(v,v),nmin);

P4 = Strass(A(v,v),B(v,u)-B(u,u),nmin);

P5 = Strass(A(u,u)+A(u,v),B(v,v),nmin);

P6 = Strass(A(v,u)-A(u,u),B(u,u) + B(u,v),nmin);

P7 = Strass(A(u,v)-A(v,v),B(v,u)+B(v,v),nmin);

C = [P1+P4-P5+P7 P3+P5; P2+P4 P1+P3-P2+P6];

end

The script StrassFlops tabulates the number of flops required by this function for various values
of n and with nmin = 32:

n Strass Flops/Ordinary Flops

32 0.945

64 0.862

128 0.772

256 0.684

512 0.603

1024 0.530

Problems

P5.4.1 Modify FFTrecur so that it does not involve redundant weight computation.

P5.4.2 This problem is about a fast solution to the trigonometric interpolation problem posed in §2.4.4 on page
100. Suppose f is a real n-vector with n = 2m. Suppose y = (2/n)Fnf = ã− ib̃ where ã and b̃ are real n-vectors.
It can be shown that

aj =

{

ãj/2 j = 1,m + 1
ãj j = 2:m

and
bj = b̃j+1 j = 1:m− 1

5.5. DISTRIBUTED MEMORY MATRIX MULTIPLICATION 201

prescribe the vectors F.a and F.b returned by CSinterp(f). Using these facts, write a fast implementation of that
function that relies on the FFT. Confirm that O(n log n) flops are required.

P5.4.3 Modify Strass so that it can handle general n. Hint: You will have to figure out how to partition the
matrix multiplication if n is odd.

P5.4.4 Let f(q, r) be the number of flops required by Strass if n = 2q and nmin = 2r. Assume that q ≥ r.
Develop an analytical expression for f(q, r). For q = 1:20, compare minr≤sf(q, r) and 2 · (2q)3.

5.5 Distributed Memory Matrix Multiplication

In a shared memory machine, individual processors are able to read and write data to a (typically
large) global memory. A snapshot of what it is like to compute in a shared memory environment
is given at the end of Chapter 4, where we used the quadrature problem as an example.

In contrast to the shared memory paradigm is the distributed memory paradigm. In a dis-
tributed memory computer, there is an interconnection network that links the processors and is
the basis for communication. In this section we discuss the parallel implementation of matrix
multiplication, a computation that is highly parallelizable and provides a nice opportunity to
contrast the shared and distributed memory approaches.1

5.5.1 Networks and Communication

We start by discussing the general set-up in a distributed memory environment. Popular inter-
connection networks include the ring and the mesh. See Figure 5.4 below and 5.5 on the next
page.

The individual processors come equipped with their own processing units, local memory, and
input/output ports. The act of designing a parallel algorithm for a distributed memory system
is the act of designing a node program for each of the participating processors. As we shall see,
these programs look like ordinary programs with occasional send and recv commands that are
used for the sending and receiving of messages. For us, a message is a matrix. Since vectors and
scalars are special matrices, a message may consist of a vector or a scalar.

In the following we suppress very important details such as (1) how data and programs are
downloaded into the nodes, (2) the subscript computations associated with local array access,

Proc(1) Proc(2) Proc(3) Proc(4)

Figure 5.4 A ring multiprocessor

1The distinction between shared memory multiprocessors and distributed memory multiprocessors is fuzzy. A
shared memory can be physically distributed. In such a case, the programmer has all the convenience of being able
to write node programs that read and write directly into the shared memory. However, the physical distribution
of the memory means that either the programmer or the compiler must strive to access “nearby” memory as much
as possible.

202 CHAPTER 5. MATRIX COMPUTATIONS

Proc(4,1) Proc(4,2) Proc(4,3) Proc(4,4)

Proc(3,1) Proc(3,2) Proc(3,3) Proc(3,4)

Proc(2,1) Proc(2,2) Proc(2,3) Proc(2,4)

Proc(1,1) Proc(1,2) Proc(1,3) Proc(1,4)

Figure 5.5 A mesh multiprocessor

and (3) the formatting of messages. We designate the µth processor by Proc(µ). The µth node
program is usually a function of µ.

The distributed memory paradigm is quite general. At the one extreme we can have networks
of workstations. On the other hand, the processors may be housed on small boards that are
stacked in a single cabinet sitting on a desk.

The kinds of algorithms that can be efficiently solved on a distributed memory multiprocessor
are defined by a few key properties:

• Local memory size. An interesting aspect of distributed memory computing is that the
amount of data for a problem may be so large that it cannot fit inside a single processor.
For example, a 10,000-by-10,000 matrix of floating point numbers requires almost a thou-
sand megabytes of storage. The storage of such an array may require the local memories
from hundreds of processors. Local memory often has a hierarchy, as does the memory of
conventional computers (e.g., disks → slow random access memory → fast random access
memory, etc.).

• Processor speed. The speed at which the individual processing units execute is of obvious
importance. In sophisticated systems, the individual nodes may have vector capabilities,
meaning that the extraction of peak performance from the system requires algorithms that
vectorize at the node level. Another complicating factor may be that system is made up of
different kinds of processors. For example, maybe every fourth node has a vector processing
accelerator.

• Message passing overhead. The time it takes for one processor to send another processor
a message determines how often a node program will want to break away from productive

5.5. DISTRIBUTED MEMORY MATRIX MULTIPLICATION 203

calculation to receive and send data. It is typical to model the time it takes to send or
receive an n-byte message by

T (n) = α + βn. (5.1)

Here, α is the latency and β is the bandwidth. The former measures how long it takes to
“get ready” for a send/receive while the latter is a reflection of the “size” of the wires that
connect the nodes. This model of communication provides some insight into performance,
but it is seriously flawed in at least two regards. First, the proximity of the receiver to the
sender is usually an issue. Clearly, if the sender and receiver are neighbors in the network,
then the system software that routes the message will not have so much to do. Second, the
message passing software or hardware may require the breaking up of large messages into
smaller packets. This takes time and magnifies the effect of latency.

The examples that follow will clarify some of these issues.

5.5.2 A Two-processor Matrix Multiplication

Consider the matrix-matrix multiplication problem

C ← C + AB,

where the three matrices A, B, C ∈ IRn×n are distributed in a two-processor distributed memory
network. To be specific, assume that n = 2m and that Proc(1) houses the “left halves”

AL = A(:, 1:m), BL = B(:, 1:m), CL = C(:, 1:m),

and that Proc(2) houses the “right halves”

AR = A(:, m + 1:n), BR = B(:, m + 1:n) CR = C(:, m + 1:n).

Pictorially we have

AL BL CL

Proc(1)

AR BR CR

Proc(2)

We assign to Proc(1) and Proc(2) the computation of the new CL and CR, respectively. Let’s
see where the data for these calculations come from. We start with a complete specification of
the overall computation:

for j=1:n

C(:,j) = C(:,j) + A*B(:,j);

end

204 CHAPTER 5. MATRIX COMPUTATIONS

Note that the jth column of the updated C is the jth column of the original C plus A times the
jth column of B. The matrix-vector product A*B(:,j) can be expressed as a linear combination
of A-columns:

A ∗ B(:, j) = A(:, 1) ∗ B(1, j) + A(:, 2) ∗ B(2, j)+ · · · +A(:, n) ∗ B(n, j).

Thus the preceding fragment expands to

for j=1:n

for k=1:n

C(:,j) = C(:,j) + A(:,k)*B(k,j);

end

end

Note that Proc(1) is in charge of

for j=1:m

for k=1:n

C(:,j) = C(:,j) + A(:,k)*B(k,j);

end

end

while Proc(2) must carry out

for j=m+1:n

for k=1:n

C(:,j) = C(:,j) + A(:,k)*B(k,j);

end

end

From the standpoint of communication, there is both good news and bad news. The good news is
that the B-data and C-data required are local. Proc(1) requires (and has) the left portions of C
and B. Likewise, Proc(2) requires (and has) the right portions of these same matrices. The bad
news concerns A. Both processors must “see” all of A during the course of execution. Thus, for
each processor exactly one half of the A-columns are nonlocal, and these columns must somehow
be acquired during the calculation. To highlight the local and nonlocal A-data, we pair off the
left and the right A-columns:

Proc(1) does this: Proc(2) does this:

for j=1:m for j=m+1:n

for k=1:m for k=1:m

C(:,j) = C(:,j) + A(:,k)*B(k,j); C(:,j) = C(:,j) + A(:,k+m)*B(k+m,j);

C(:,j) = C(:,j) + A(:,k+m)*B(k+m,j); C(:,j) = C(:,j) + A(:,k)*B(k,j);

end end

end end

In each case, the second update of C(:,j) requires a nonlocal A-column. Somehow, Proc(1)
has to get hold of A(:, k + m) from Proc(2). Likewise, Proc(2) must get hold of A(:, k) from
Proc(1).

5.5. DISTRIBUTED MEMORY MATRIX MULTIPLICATION 205

The primitives send and recv are to be used for this purpose. They have the following syntax:

send({matrix} , {destination node}) recv({matrix} , {source node})

If a processor invokes a send, then we assume that execution resumes immediately after the
message is sent. If a recv is encountered, then we assume that execution of the node program is
suspended until the requested message arrives. We also assume that messages arrive in the same
order that they are sent.2

With send and recv, we can solve the nonlocal data problem in our two-processor matrix
multiply:

Proc(1) does this: Proc(2) does this:

for j=1:m for j=m+1:n

for k=1:m for k=1:m

send(A(:,k),2); send(A(:,k+m),1);

C(:,j) = C(:,j) + A(:,k)*B(k,j); C(:,j) = C(:,j) + A(:,k+m)*B(k+m,j);

recv(v,2); recv(v,1);

C(:,j) = C(:,j) + v*B(k+m,j); C(:,j) = C(:,j) + v*B(k,j);

end end

end end

Each processor has a local work vector v that is used to hold an A-column solicited from its
neighbor. The correctness of the overall process follows from the assumption that the messages
arrive in the order that they are sent. This ensures that each processor “knows” the index of the
incoming columns. Of course, this is crucial because incoming A-columns have to scaled by the
appropriate B entries.

Although the algorithm is correct and involves the expected amount of floating point arith-
metic, it is inefficient from the standpoint of communication. Each processor sends a given local
A-column to its neighbor m times. A better plan is to use each incoming A-column in all the
C(:, j) updates “at once.” To do this, we merely reorganize the order in which things are done
in the node programs:

Proc(1) does this: Proc(2) does this:

for k=1:m for k=1:m

send(A(:,k),2); send(A(:,k+m),1);

for j=1:m for j=m+1:n

C(:,j) = C(:,j) + A(:,k)*B(k,j); C(:,j) = C(:,j) + A(:,k+m)*B(k+m,j);

end; end

recv(v,2); recv(v,1);

for j=1:m for j=m+1:n

C(:,j) = C(:,j) + v*B(k+m,j); C(:,j) = C(:,j) + v*B(k,j);

end end

end end

Although there is “perfect symmetry” between the two node programs, we cannot assume that
they proceed in lock-step fashion. However, the program is load balanced because each processor
has roughly the same amount of arithmetic and communication.

2This need not be true in practice. However, a system of tagging messages can be incorporated that can be
used to remove ambiguities.

206 CHAPTER 5. MATRIX COMPUTATIONS

In the preceding, the matrices A, B, and C are accessed as if they were situated in a single
memory. Of course, this will not be the case in practice. For example, Proc(2) will have a local
n-by-m array to house its portion of C. Let’s call this array C.loc and assume that C.loc(i,j)
houses matrix element C(i, j + m). Similarly, there will be local array A.loc and B.loc that
house their share of A and B, respectively. If we rewrite Proc(2)’s node program in the true
“language” of its local arrays, then it becomes

for k=1:m

send(A.loc(:,k),1);

for j=1:m

C.loc(:,j) = C.loc(:,j) + A.loc(:,k)*B.loc(k,j);

end

recv(v,1);

for j=1:m

C.loc(:,j) = C(:,j) + v*B.loc(k+m,j);

end

end

We merely mention this to stress that what may be called “subscript reasoning” undergoes a
change when working in distributed memory environments.

5.5.3 Performance Analysis

Let’s try to anticipate the time required to execute the communication-efficient version of the two-
processor matrix multiply. There are two aspects to consider: computation and communication.
With respect to computation, we note first that overall calculation involves 2n3 flops. This is
because there are n2 entries in C to update and each update requires the execution of a length
n inner product (e.g., C(i, j) = C(i, j) + A(i, :) ∗B(:, j)). Since an inner product of that length
involves n adds and n multiplies, n2(2n) flops are required in total. These flops are distributed
equally between the two processors. If computation proceeds at a uniform rate of R flops per
second, then

Tcomp = n3/R

seconds are required to take care of the arithmetic.3

With respect to communication costs, we use the model (5.1) on page 203 and conclude that
each processor spends

Tcomm = n(α + 8βn)

seconds sending and receiving messages. (We assume that each floating point number has an
8-byte representation.) Note that this is not the whole communication overhead story because
we are not taking into account the idle wait times associated with the receives. (The required
vector may not have arrived at time of the recv.) Another factor that complicates performance
evaluation is that each node may have a special input/output processor that more or less handles
communication making it possible to overlap computation and communication.

3Recall the earlier observation that with many advanced architectures, the execution rate varies with the
operation performed and whether or not it is vectorized.

5.5. DISTRIBUTED MEMORY MATRIX MULTIPLICATION 207

Ignoring these possibly significant details leads us to predict an overall execution time of
T = Tcomp + Tcomm seconds. It is instructive to compare this time with what would be required
by a single-processor program. Look at the ratio

S =
2n3/R

(n3/R) + n(α + 8βn)
=

2

1 + R
(

α
n2 +

8β
n

) .

S represents the speed-up of the parallel program. We make two observations: (1) Communication
overheads are suppressed as n increases, and (2) if α and β are fixed, then speed-up decreases as
the rate of computation R improves.

In general, the speed-up of a parallel program executing on p processors is a ratio:

Speed-up =
Time required by the best single-processor program

Time required for the p-processor implementation
.

In this definition we do not just set the numerator to be the p = 1 version of the parallel code
because the best uniprocessor algorithm may not parallelize. Ideally, one would like the speed-up
for an algorithm to equal p.

Problems

P5.5.1 Assume that n = 3m and that the n-by-n matrices A, B, C are distributed around a three-processor
ring. In particular, assume that processors 1, 2, and 3 house the left third, middle third, and right third of these
matrices. For example, B(:,m+1:2m) would be housed in Proc(2). Write a parallel program for the computation
C ← C + AB.

P5.5.2 Suppose we have a two-processor distributed memory system in which floating point arithmetic proceeds
at R flops per second. Assume that when one processor sends or receives a message of k floating point numbers,
then α + βk seconds are required. Proc(1) houses an n-by-n matrix A, and each processor houses a copy of an
n-vector x. The goal is to store the vector y = Ax in Proc(1)’s local memory. You may assume that n is even. (a)
How long would this take if Proc(1) handles the entire computation itself? (b) Describe how the two processors
can share the computation. Indicate the data that must flow between the two processors and what they must
each calculate. You do not have to write formal node programs. Clear concise English will do. (c) Does it follow
that if n is large enough, then it is more efficient to distribute the computation? Justify your answer.

M-Files and References

Script Files

CircBench Benchmarks Circulant1 and Circulant2.
MatBench Benchmarks various matrix-multiply methods.
AveNorms Compares various norms on random vectors.
ProdBound Examines the error in three-digit matrix multiplication.
ShowContour Displays various contour plots of SampleF.
Show2DQuad Illustrates CompQNC2D.
FFTflops Compares FFT and DFT flops.
StrassFlops Examines Strassen multiply.

208 CHAPTER 5. MATRIX COMPUTATIONS

Function Files

Circulant1 Scalar-level circulant matrix set-up.
Circulant2 Vector-level circulant matrix set-up.
MatVecRO Row-oriented matrix-vector product.
MatVecCO Column-Oriented matrix-vector product.
MatMatDot Dot-product matrix-matrix product.
MatMatSax Saxpy matrix-matrix product.
MatMatVec Matrix-vector matrix-matrix product.
MatMatOuter Outer product matrix-matrix product.
MakeBlock Makes a cell array representation of a block matrix.
ShowSparse Illustrates sparse.
ShowNonZeros Displays the sparsity pattern of a matrix.
Prod3Digit Three-digit matrix-matrix product.
SampleF A Gaussian type function of two variables.
CompQNC2D Two-dimensional Newton-Cotes rules.
wCompNC Weight vector for composite Newton-Cotes rules.
SampleF2 A function of two variables with strong local maxima.
DFT Discrete Fourier transform.
FFTRecur A recursive radix-2 FFT.
Strass Recursive Strassen matrix multiply.

References

T.F. Coleman and C.F. Van Loan (1988). Handbook for Matrix Computations, SIAM Publica-
tions, Philadelphia, PA.

G.H. Golub and C.F. Van Loan (1996). Matrix Computations, Third Edition, Johns Hopkins
University Press, Baltimore, MD.

C.F. Van Loan (1992). Computational Frameworks for the Fast Fourier Transform, SIAM Pub-
lications, Philadelphia, PA.

