
Chapter 1

Power Tools of the Trade

§1.1 Vectors and Plotting

§1.2 More Vectors, More Plotting, and Now Matrices

§1.3 Building Exploratory Environments

§1.4 Error

§1.5 Designing Functions

§1.6 Structure Arrays and Cell Arrays

§1.7 More Refined Graphics

Matlab is a matrix-vector-oriented system that supports a wide range of activity that is crucial to the
computational scientist. In this chapter we get acquainted with this system through a collection of examples
that sets the stage for the proper study of numerical computation. The Matlab environment is very easy
to use and you might start right now by running demo. Our introduction in this chapter previews the central
themes that occur with regularity in the following chapters.

We start with the exercise of plotting. Matlab has an extensive array of visualization tools. But even
the simplest plot requires setting up a vector of function values, and so very quickly we are led to the many
vector-level operations that Matlab supports. Our mission is to build up a linear algebra sense to the
extent that vector-level thinking becomes as natural as scalar-level thinking. Matlab encourages this in
many ways, and plotting is the perfect start-up topic. The treatment is spread over two sections.

Building environments that can be used to explore mathematical and algorithmic ideas is the theme of
§1.3. A pair of random simulations is used to illustrate how Matlab can be used in this capacity.

In §1.4 we learn how to think and reason about error. Error is a fact of life in computational science,
and our examples are designed to build an appreciation for two very important types of error. Mathematical
errors result when we take what is infinite or continuous and make it finite or discrete. Rounding errors arise
because floating-point representation and arithmetic is inexact.

§1.5 is devoted to the art of designing effective functions. The user-defined function is a fundamental
building block in scientific computation. More complicated data structures are discussed in §1.6, while in
the last section we point to various techniques that can be used to enrich the display of visual data.

1.1 Vectors and Plotting

Suppose we want to plot the function f(x) = sin(2πx) across the interval [0, 1]. In Matlab there are three
components to this task.

• A vector of x-values that range across the interval must be set up:

0 = x1 < x2 < · · · < xn = 1.

1

2 CHAPTER 1. POWER TOOLS OF THE TRADE

• The function must be evaluated at each x-value:

yk = f(xk), k = 1, . . . , n.

• A polygonal line that connects the points (x1, y1), . . . , (xn, yn) must be displayed.

If we take 21 equally spaced x-values, then the result looks like the plot shown in Figure 1.1. The plot is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
The Function y = sin(2*pi*x)

x (in radians)

y

Figure 1.1 A crude plot of sin(2πx)

“crude” because the polygonal effect is noticeable in regions where the function is changing rapidly. But
otherwise the graph looks quite good. Our introduction to Matlab begins with the details of the plotting
process and the vector computations that go along with it. The sin(2πx) example is used throughout because
it is simple and structured. Exploiting that structure leads naturally to some vector operations that are well
supported in the Matlab environment.

1.1.1 Setting Up Vectors

When you invoke the Matlab system, you enter the command window and are prompted to enter commands
with the symbol “>>”. For example,

>> x = [10.1 20.2 30.3]

Matlab is an interactive environment and it responds with

x =

10.1000 20.2000 30.3000

>>

This establishes x as a length-3 row vector. Square brackets delineate the vector and spaces separate the
components. On the other hand, the exchange

>> x = [10.1; 20.2; 30.3]

x =

10.1000

20.2000

30.3000

1.1. VECTORS AND PLOTTING 3

establishes x as a length-3 column vector. Again, square brackets define the vector being set up. But this
time semicolons separate the component entries and a column vector is produced.

In general, Matlab displays the consequence of a command unless it is terminated with a semicolon.
Thus,

>> x = [10.1; 20.2; 30.3];

sets up the same column 3-vector as in the previous example, but there is no echo that displays the result.
However, the dialog

x = [10.1; 20.2; 30.3];

x

x =

10.1000

20.2000

30.3000

shows that the contents of a vector can be displayed merely by entering the name of the vector. Even if one
component in a vector is changed with no terminating semicolon, Matlab displays the whole vector:

x = [10.1; 20.2; 30.3];

x(2) = 21

x =

10.1000

21.0000

30.3000

It is clear that when dealing with large vectors, a single forgotten semicolon can result in a deluge of displayed
output.

To change the orientation of a vector from row to column or column to row, use an apostrophe. Thus,

x = [10.1 20.2 30.3]’

establishes x as a length-3 column vector. Placing an apostrophe after a vector effectively takes its transpose.
The plot shown in Figure 1.1 involves the equal spacing of n = 21 x-values across [0, 1]; that is

x = [0 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 ...

.55 .60 .65 .70 .75 .80 .85 .90 .95 1.0]

The ellipsis symbol “...” permits the entry of commands that occupy more than one line.
It is clear that for even modest values of n, we need other mechanisms for setting up vectors. Naturally

enough, a for-loop can be used:

n = 21;

h = 1/(n-1);

for k=1:n

x(k) = (k-1)*h;

end

This is a Matlab script. It assigns the same length-21 vector to x as before and it brings up an important
point.

In Matlab, variables are not declared by the user but are created on a
need-to-use basis by a memory manager. Moreover, from Matlab’s point
of view, every simple variable is a complex matrix indexed from unity.

4 CHAPTER 1. POWER TOOLS OF THE TRADE

Scalars are 1-by-1 matrices. Vectors are “skinny” matrices with either one row or one column. We have
much more to say about “genuine” matrices later. Our initial focus is on real vectors and scalars.

In the preceding script, n, h, k, and x are variables. It is instructive to trace how x “turns into” a vector
during the execution of the for-loop. After one pass through the loop, x is a length-1 vector (i.e., a scalar).
During the second pass, the reference x(2) prompts the memory manager to make x a 2-vector. During the
third pass, the reference x(3) prompts the memory manager to make x a 3-vector. And so it goes until by
the end of the loop, x has length 21. It is a convention in Matlab that this kind of vector construction
yields row vectors.

The Matlab zeros function is handy for setting up the shape and size of a vector prior to a loop that
assigns it values. Thus,

n = 21;

h = 1/(n-1);

x = zeros(1,n);

for k=1:n;

x(k) = (k-1)*h;

end

computes x as row vector of length-21 and initializes the values to zero. It then proceeds to assign the appro-
priate value to each of the 21 components. Replacing x = zeros(1,n) with the command x = zeros(n,1)

sets up a length-21 column vector. This style of vector set-up is recommended for two reasons. First, it
forces you to think explicitly about the orientation and length of the vectors that you are working with. This
reduces the chance for “dimension mismatch” errors when vectors are combined. Second, it is more efficient
because the memory manager does not have to “work” so hard with each pass through the loop.

Matlab supplies a length function that can be used to probe the length of any vector. To illustrate its
use, the script

u = [10 20 30];

n = length(u);

v = [10;20;30;40];

m = length(v);

u = [50 60];

p = length(u);

assigns the values of 3, 4, and 2 to n, m, and p, respectively.
This brings up another important feature of Matlab. It supports a very extensive help facility. For

example, if we enter

help length

then Matlab responds with

LENGTH Number of components of a vector.

LENGTH(X) returns the length of vector X. It is equivalent

to MAX(SIZE(X)).

So extensive and well structured is the help facility that it obviates the need for us to go into excessive
detail when discussing many of Matlab’s capabilities. Get in the habit of playing around with each new
Matlab feature that you learn, exploring the details via the help facility. Start right now by trying

help help

Here in Chapter 1 there are many occasions to use the help facility as we proceed to acquire enough familiarity
with the system to get started. Before continuing, you are well advised to try

help who

help whos

help clear

1.1. VECTORS AND PLOTTING 5

to learn more about the management of memory. We have already met a number of Matlab language
features and functions. You can organize your own mini-review by entering

help for

help zeros

help ;

help []

1.1.2 Regular Vectors

Regular vectors arise so frequently that Matlab has a number of features that support their construction.
With the colon notation it is possible to establish row vectors whose components are equally spaced. The
command

x = 20:24

is equivalent to

x = [20 21 22 23 24]

The spacing between the component values is called the stride and the vector x has unit stride. Nonunit
strides can also be specified. For example,

x = 20:2:29;

This stride-2 vector is the same as

x = [20 22 24 26 28]

Negative strides are also permissible. The assignment

x = 10:-1:1

is equivalent to

x = [10 9 8 7 6 5 4 3 2 1]

As seen from the examples, the general use of the colon notation has the form

〈Starting Index〉:〈Stride〉:〈Bounding Index〉

If the starting index is beyond the bounding index, then the empty vector is produced:

x = 3:2

x =

[]

The empty vector has length zero and is denoted with a square bracket pair with nothing in between.
The colon notation also works with nonintegral values. The command

x = 0:.05:1

sets up a length-21 row vector with the property that xi = (i− 1)/20, i = 1, . . . , 21. Alternatively, we could
multiply the vector 0:20 by the scalar .05:

x = .05*(0:20)

However, if nonintegral strides are involved, then it is preferable to use the linspace function. If a and b

are real scalars, then

x = linspace(a,b,n)

6 CHAPTER 1. POWER TOOLS OF THE TRADE

returns a row vector of length n whose kth entry is given by

xk = a + (k − 1) ∗ (b − a)/(n − 1).

For example,

x = linspace(0,1,21)

is equivalent to

x = [0 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 ...

.55 .60 .65 .70 .75 .80 .85 .90 .95 1.0]

In general, a reference to linspace has the form

linspace(〈Left Endpoint〉,〈Right Endpoint〉,〈Number of Points〉)

Logarithmic spacing is also possible. The assignment

x = logspace(-2,3,6);

is the same as x = [.01 .1 1 10 100 1000]. More generally, x = logspace(a,b,n) sets

xk = 10a+(b−a)(k−1)/(n−1), k = 1, . . . , n

and is equivalent to

m = linspace(a,b,n);

for k=1:n

x(k) = 10^m(k);

end

The linspace and logspace functions bring up an important detail. Many of Matlab’s functions can
be called with a reduced parameter list that is often useful in simple, canonical situations. For example,
linspace(a,b) is equivalent to linspace(a,b,100)and logspace(a,b) is equivalent to logspace(a,b,50).
Make a note of these shortcuts as you become acquainted with Matlab’s many features.

So far we have not talked about how Matlab displays results except to say that if a semicolon is left off
the end of a statement, then the consequences of that statement are displayed. Thus, if we enter

x = .123456789012345*logspace(1,5,5)’

then the vector x is displayed according to the active format. For example,

x =

1.0e+04 *

0.0001

0.0012

0.0123

0.1235

1.2346

The preceding is the short format. The long, short e, and long e formats are also handy as depicted
in Figure 1.2. The short format is active when you first enter Matlab. The format command is used to
switch formats. For example,

format long

It is important to remember that the display of a vector is independent of its internal floating point repre-
sentation, something that we will discuss in §1.4.4.

1.1. VECTORS AND PLOTTING 7

short long short e long e

1.0e+14 *

0.0000
0.0000
0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000

0.0001
0.0012
0.0123
0.1235
1.2346

1.0e+14 *

0.00000000000001
0.00000000000012
0.00000000000123
0.00000000001235
0.00000000012346

0.00000000123457
0.00000001234568
0.00000012345679
0.00000123456789
0.00001234567890

0.00012345678901
0.00123456789012
0.01234567890123
0.12345678901234
1.23456789012345

1.2346e+00
1.2346e+01
1.2346e+02
1.2346e+03
1.2346e+04

1.2346e+05
1.2346e+06
1.2346e+07
1.2346e+08
1.2346e+09

1.2346e+10
1.2346e+11
1.2346e+12
1.2346e+13
1.2346e+14

1.234567890123450e+00
1.234567890123450e+01
1.234567890123450e+02
1.234567890123450e+03
1.234567890123450e+04

1.234567890123450e+05
1.234567890123450e+06
1.234567890123450e+07
1.234567890123450e+08
1.234567890123450e+09

1.234567890123450e+10
1.234567890123450e+11
1.234567890123450e+12
1.234567890123450e+13
1.234567890123450e+14

Figure 1.2 The display of .123456789012345*logspace(1,15,15)’

1.1.3 Evaluating Functions

We return to the task of plotting sin(2πx). Matlab comes equipped with a host of built-in functions
including sin. (Enter help elfun to see the available elementary functions.) The script

n = 21;

x = linspace(0,1,n);

y = zeros(1,n);

for k=1:n

y(k) = sin(2*pi*x(k));

end

sets up a vector of sine values that correspond to the values in x. But many of the built-in functions like
sin accept vector arguments, and the preceding loop can be replaced with a single reference as follows:

n = 21;

x = linspace(0,1,n);

y = sin(2*pi*x);

The act of replacing a loop in Matlab with a single vector-level operation will be referred to as vectorization
and has three fringe benefits:

• Speed. Many of the built-in Matlab functions provide the results of several calls faster if called once
with the corresponding vector argument(s).

• Clarity. It is often easier to read a vectorized Matlab script than its scalar-level counterpart.

• Education. Scientific computing on advanced machines requires that one be able to think at the vector
level. Matlab encourages this and, as the title of this book indicates, we have every intention of
fostering this style of algorithmic thinking.

As a demonstration of the vector-level manipulation that Matlab supports, we dissect the following script:

8 CHAPTER 1. POWER TOOLS OF THE TRADE

m = 5; n = 4*m+1;

x = linspace(0,1,n); a = x(1:m+1);

y = zeros(1,n);

y(1:m+1) = sin(2*pi*a);

y(2*m+1:-1:m+2) = y(1:m);

y(2*m+2:n) = -y(2:2*m+1);

which sets up the same vector y as before but with one-fourth the number of scalar sine evaluations. The
idea is to exploit symmetries in the table shown in Figure 1.3. The script starts by assigning to a a subvector

k xk sin(xk)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

0
18
36
54
72
90

108
126
144
162
180
198
216
234
252
270
288
306
324
342
360

0.000
0.309
0.588
0.809
0.951
1.000
0.951
0.809
0.588
0.309
0.000

-0.309
-0.588
-0.809
-0.951
-1.000
-0.951
-0.809
-0.588
-0.309
-0.000

Figure 1.3 Selected values of the sine function (xk in degrees)

of x. In particular, the assignment to a is equivalent to

a = [0.00 0.05 0.10 0.15 0.20 0.25]

In general, if v is a vector of integers that are valid subscripts for a row vector z, then

w = z(v);

is equivalent to

for k=1:length(v)

w(k) = z(v(k));

end

The same idea applies to column vectors. Extracted subvectors have the same orientation as the parent
vector.

Assignment to a subvector is also legal provided the named subscript range is valid. Thus,

y(1:m+1) = sin(2*pi*a);

is equivalent to

1.1. VECTORS AND PLOTTING 9

for k=1:m+1

y(k) = sin(2*pi*a(k));

end

Now comes the first of two mathematical exploitations. The sine function has the property that

sin
(π

2
+ x

)
= sin

(π

2
− x

)
.

Thus,





sin(10h)
sin(9h)
sin(8h)
sin(7h)
sin(6h)




=





sin(0h)
sin(h)
sin(2h)
sin(3h)
sin(4h)




h = 2π/20.

Note that the components on the left should be stored in reverse order in y(7:11), while the components
on the right have already been computed and are housed in y(1:5). (See Figure 1.3.) The assignment

y(m+1:2*m+1) = y(m:-1:1);

establishes the necessary values in y(7:11).
At this stage, y(1:2*m+1) contains the sine values from [0, π] that are required. To obtain the remaining

values, we exploit a second trigonometric identity:

sin(π + x) = − sin(x).

We see that this implies





sin(11h)
sin(12h)
sin(13h)
sin(14h)
sin(15h)
sin(16h)
sin(17h)
sin(18h)
sin(19h)
sin(20h)





= −





sin(h)
sin(2h)
sin(3h)
sin(4h)
sin(5h)
sin(6h)
sin(7h)
sin(8h)
sin(9h)
sin(10h)





h = 2π/20.

The sine values on the left belong in y(12:21) while those on the right have already been computed and
occupy y(2:11). Hence, the construction of y(1:21) is completed with the assignment

y(2*m+2:n) = -y(2:2*m+1);

(See Figure 1.3.)
Why go though such contortions when y = sin(2*pi*linspace(0,1,21)) is so much simpler? The

reason is that more often than not, function evaluations are expensive and one should always be searching
for relationships that reduce their number. Of course, sin is not expensive. But the vector computations
detailed in this subsection above are instructive because we must learn to be sparing when it comes to the
evaluation of functions.

1.1.4 Displaying Tables

Any vector can be displayed by merely typing its name and leaving off the semicolon. However, sometimes a
more customized output is preferred, and for that a facility with the disp and sprintf functions is required.

10 CHAPTER 1. POWER TOOLS OF THE TRADE

But before we can go any further we must introduce the concept of a script file. Already, our scripts are
getting too long and too complicated to assemble line-by-line in the command window. The time has come
to enlist the services of a text editor and to store the command sequence in a file that can then be executed.

To illustrate the idea, we set up a script file that can be used to display the table in Figure 1.3. We start
by entering the following into a file named SineTable.m:

% Script File: SineTable

% Prints a short table of sine evaluations.

clc

n = 21;

x = linspace(0,1,n);

y = sin(2*pi*x);

disp(’ ’)

disp(’ k x(k) sin(x(k))’)

disp(’------------------------’)

for k=1:21

degrees = (k-1)*360/(n-1);

disp(sprintf(’ %2.0f %3.0f %6.3f ’,k,degrees,y(k)));

end

disp(’ ’);

disp(’x(k) is given in degrees.’)

disp(sprintf(’One Degree = %5.3e Radians’,pi/180))

The .m suffix is crucial, for then the preceding command sequence is executed merely by entering SineTable

at the prompt:

>> SineTable

This displays the table shown in Figure 1.3, assuming that Matlab can find SineTable.m. This is assured
if the file is in the current working directory or if path is properly set. Review what you must know about
key file organization by entering help dir cd ls lookfor.

Focusing on SineTable itself, there are a number of new features that we must explain. The script begins
with a sequence of comments indicating what happens when it is run. Comments in Matlab begin with
the percent symbol “%”. Aside from enhancing readability, the lead comments are important because they
are displayed in response to a help enquiry. That is,

help SineTable

Use type to list the entire contents of a file, e.g.,

type SineTable

The clc command clears the command window and places the cursor in the home position. (This is
usually a good way to start a script that is to generate command window output.) The disp command has
the form

disp(〈string〉)

Strings in Matlab are enclosed by single quotes. The commands

disp(’ ’)

disp(’ k x(k) sin(x(k))’)

disp(’------------------------’)

are used to print a blank line, a heading, and a dashed line.
The sprintf command is used to produce a string that includes the values of named variables. It has

the form

sprintf(〈String with Format Specifications〉,〈List-of-Variables〉)

1.1. VECTORS AND PLOTTING 11

A variable must be listed for each format. Sample format insertions include %5.0f, %8.3f, and %10.6e. The
first integer in a format specification is the total width of the field. The second number specifies how many
places are allocated to the fractional part. In the script, the command

disp(sprintf(’ %2d %3.0f %6.3f ’,k,degrees,y(k)));

prints a line with three numbers. The three numbers are stored in k, degrees, and y(k). The value of k is
printed as an integer while degrees is printed with a decimal point but with no digits to the right of the
decimal point. On the other hand, y(k) is printed with three decimal places. The e format is used to specify
mantissa/exponent style. For example,

disp(sprintf(’One Degree = %5.3e Radians’,pi/180))

This produces the output of the form

One Degree = 1.745e-02 Radians

If x is a vector then

disp(sprintf(’ %5.3e ’,x))

displays all the components of x on a single line, each with 5.3e format.

1.1.5 A Note About fprintf

It is sometimes handy to use fprintf instead of the combinations of disp and sprintf. Consider the
fragement

disp(’ ’)

disp(’ k x(k) sin(x(k))’)

disp(’------------------------’)

for k=1:21

degrees = (k-1)*360/(n-1);

disp(sprintf(’ %2.0f %3.0f %6.3f ’,k,degrees,y(k)));

end

disp(’ ’);

disp(’x(k) is given in degrees.’)

disp(sprintf(’One Degree = %5.3e Radians’,pi/180))

taken from the script SinePlot above. This is equivalent to

fprintf(’\n k x(k) sin(x(k))\n------------------------\n’)

for k=1:21

degrees = (k-1)*360/(n-1);

fprintf(’ %2.0f %3.0f %6.3f \n’,k,degrees,y(k));

end

fprintf(’ \nx(k) is given in degrees.\nOne Degree = %5.3e Radians’,pi/180)

The carriage return command “\n” effecively says “start a new line of output”.

1.1.6 A Simple Plot

We are now in a position to solve the plotting problem posed at the beginning of this section. The script

n = 21; x = linspace(0,1,n); y = sin(2*pi*x);

plot(x,y)

title(’The Function y = sin(2*pi*x)’)

xlabel(’x (in radians)’)

ylabel(’y’)

12 CHAPTER 1. POWER TOOLS OF THE TRADE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Plot of sin(2*pi*x) based upon n = 400 points.

Figure 1.4 A smooth plot of sin(2πx)

reproduces Figure 1.1. It draws a polygonal line in a figure that connects the vertices (xk, yk), k = 1:21 in
order. In its most simple form, plot takes two vectors of equal size and plots the second versus the first. The
scaling of the axes is done automatically. The title, xlabel, and ylabel functions enable us to “comment”
the plot. Each requires a string argument.

To produce a better plot with no “corners,” we increase n so that the line segments that make up the
graph are sufficiently short, thereby rendering the impression of a genuine curve. For example,

n = 200;

x = linspace(0,1,n);

y = sin(2*pi*x);

plot(x,y)

title(’The function y = sin(2*pi*x)’)

xlabel(’x (in radians)’)

ylabel(’y’)

produces the plot displayed in Figure 1.4. In general, the smoothness of a displayed curve depends on the
spacing of the underlying sample points, screen granularity, and the vision of the observer. Here is a script
file that produces a sequence of increasingly refined plots:

% Script File: SinePlot

% Displays increasingly smooth plots of sin(2*pi*x).

close all

for n = [4 8 12 16 20 50 100 200 400]

x = linspace(0,1,n);

y = sin(2*pi*x);

plot(x,y)

title(sprintf(’Plot of sin(2*pi*x) based upon n = %3.0f points.’,n))

pause(1)

end

There are four new features to discuss. The close all command closes all windows. It is a good idea to
begin script files that draw figures with this command so as to start with a “clean slate.” Second, notice
the use of a general vector in the specification of the for-loop. The count variable n takes on the values
in the specified vector one at a time. Third, observe the use of sprintf in the reference to title. This

1.2. MORE VECTORS, MORE PLOTTING, AND NOW MATRICES 13

enables us to report the number of points associated with each plot. Finally, the fragment makes use of
the pause function. In general, a reference of the form pause(s) holds up execution for approximately s

seconds. Because a sequence of plots is produced in the preceding example, the pause(1) command permits
a 1-second viewing of each plot.

Problems

P1.1.1 The built-in functions like sin accept vector arguments and return vectors of values. If x is an n vector, then

y =

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

abs(x)

sqrt(x)

exp(x)

log(x)

sin(x)

cos(x)

asin(x)

acos(x)

atan(x)

9

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

;

⇒ yi =

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

|xi|√
xi, xi ≥ 0

exi

log(xi), xi > 0
sin(xi)
cos(xi)
arcsin(xi), −1 ≤ xi ≤ 1
arccos(xi), −1 ≤ xi ≤ 1
arctan(xi)

9

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

;

, i = 1:n.

The vector x can be either a row vector or a column vector and y has the same shape. Write a script file that plots these
functions in succession with two-second pauses in between the plots.

P1.1.2 Define the function

f(x) =

8

>

>

<

>

>

:

p

1 − (x − 1)2 0 ≤ x ≤ 2
p

1 − (x − 3)2 2 < x ≤ 4
p

1 − (x − 5)2 4 < x ≤ 6
p

1 − (x − 7)2 6 < x ≤ 8

.

Set up a length-201 vector y with the property that yi = f(8 ∗ (i − 1)/200) for i = 1:201.

1.2 More Vectors, More Plotting, and Now Matrices

We continue to refine our vector intuition by considering several additional plotting situations. New control
structures are introduced and some of Matlab’s matrix algebra capabilities are presented.

1.2.1 Vectorizing Function Evaluations

Consider the problem of plotting the rational function

f(x) =




1 +

x

24

1 − x

12
+

x2

384





8

across the interval [0, 1]. (This happens to be an approximation to the function ex.) Here is a scalar approach:

n = 200;

x = linspace(0,1,n);

y = zeros(1,n);

for k=1:n

y(k) = ((1 + x(k)/24)/(1 - x(k)/12 + (x(k)/384)*x(k)))^8;

end

plot(x,y)

However, by using vector operations that are available in Matlab, it is possible to replace the loop with a
single, vector-level command:

14 CHAPTER 1. POWER TOOLS OF THE TRADE

% Script File: ExpPlot

% Examines the function f(x) = ((1 + x/24)/(1 - x/12 + x^2/384))^8

% as an approximation to exp(z) across [0,1].

close all

x = linspace(0,1,200);

num = 1 + x/24;

denom = 1 - x/12 + (x/384).*x;

quot = num./denom;

y = quot.^8;

plot(x,y,x,exp(x))

The assignment to y involves the familiar operations of vector scale, vector add, and vector subtract, and
the not-so-familiar operations of pointwise vector multiply, pointwise vector divide, and pointwise vector
exponentiation. To clarify each of these operations, we break the script down into more elemental steps:

z = (1/24)*x;

num = 1 + z;

w = x/384;

q = w.*x;

denom = 1 - z/2 + q;

quot = num./denom;

y = quot.^8;

Matlab supports scalar-vector multiplication. The command

z = (1/24)*x;

multiplies every component in x by (1/24) and stores the result in z. The vector z has exactly the same
length and orientation as x. The command

num = 1 + z;

adds 1 to every component of z and stores the result in num. Thus num = 1 + [20 30 40] and num = [21

31 41] are equivalent. Strictly speaking, scalar-plus-vector is not a legal vector space operation, but it is a
very handy Matlab feature.

Now let us produce the vector of denominator values. The command

w = x/384

is equivalent to

w = (1/384)*x

It is also the same as w = x*(1/384). The command

q = w.*x

makes use of pointwise vector multiplication and produces a vector q with the property that each component
is equal to the product of the corresponding components in w and x. Thus

q = [2 3 4].*[20 30 50]

is equivalent to

q = [40 90 200]

The same rules apply when the two operands are column vectors. The key is that the vectors to be multiplied
have to be identical in length and orientation. The command

1.2. MORE VECTORS, MORE PLOTTING, AND NOW MATRICES 15

0 2 4 6 8 10 12 14
−10

−8

−6

−4

−2

0

2

4

6

8

10
The Tangent Function

x

ta
n

(x
)

Figure 1.5 A plot of tan(x)

denom = 1 - z/2 + q

sets denom(i) to 1 - z(i)/2 + q(i) for all i. Vector addition, like vector subtraction, requires both
operands to have the same length and orientation.

The pointwise division quotient = num./denom performs as expected. The ith component of quotient
is set to num(i)/denom(i). Lastly, the command

y = quotient.^8

raises each component in quotient to the 8th power and assembles the results in the vector y.

1.2.2 Scaling and Superpositioning

Consider the plotting of the function tan(x) = sin(x)/ cos(x) across the interval [−π/2, 11π/2]. This is
interesting because the function has poles at points where the cosine is zero. The script

x = linspace(-pi/2,11*pi/2,200);

y = tan(x);

plot(x,y)

produces a plot with minimum information because the autoscaling feature of the plot function must deal
with an essentially infinite range of y-values. This can be corrected by using the axis function:

x = linspace(-pi/2,11*pi/2,200);

y = tan(x);

plot(x,y)

axis([-pi/2 9*pi/2 -10 10])

The axis function is used to scale manually the axes in the current plot, and it requires a 4-vector whose
values define the x and y ranges. In particular,

axis([xmin xmax ymin ymax])

imposes the x-axis range xmin ≤ x ≤ xmax and a y-axis range ymin ≤ y ≤ ymax. In our example, the
[−10, 10] range in the y-direction is somewhat arbitrary. Other values would work. The idea is to choose the
range so that the function’s poles are dramatized without sacrificing the quality of the plot in domains where
it is nicely behaved. (See Figure 1.5.) We mention that the command axis by itself returns the system to

16 CHAPTER 1. POWER TOOLS OF THE TRADE

the original autoscaling mode.
Another way to produce the same graph is to plot the first branch and then to reuse the function

evaluations for the remaining branches:

% Script File: TangentPlot

% Plots the function tan(x), -pi/2 <= x <= 9pi/2

close all

x = linspace(-pi/2,pi/2,40); y = tan(x); plot(x,y)

ymax = 10;

axis([-pi/2 9*pi/2 -ymax ymax])

title(’The Tangent Function’), xlabel(’x’), ylabel(’tan(x)’)

hold on

for k=1:4

xnew = x+ k*pi;

plot(xnew,y);

end

hold off

This script has a number of new features that require explanation. The hold on command effectively tells
Matlab to superimpose all subsequent plots on the current figure window. Each time through the for-loop,
a different branch is plotted. The axis scaling is frozen during these computations. The xnew calculation
produces the required x-domain for each branch plot. During the kth pass through the loop, the expression
xnew + k*pi establishes a vector of equally spaced values across the interval

[−π/2 + kπ,−π/2 + (k + 1)π].

The same vector of tan-evaluations is used in each branch plot. Observe that with superpositioning we
produce a plot with only one-fifth the number of tan evaluations that our initial solution required.

The hold off command shuts down the superpositioning feature and sets the stage for “normal” plotting
thereafter.

Another way that different graphs can be superimposed in the same plot is by calling plot with an
extended parameter list. Suppose we want to plot the functions sin(2πx) and cos(2πx) across the interval
[0, 1] and to mark the point where they intersect. The script

x = linspace(0,1,200); y1 = sin(2*pi*x); y2 = cos(2*pi*x);

plot(x,y1)

hold on

plot(x,y2,’-’)

plot([1/8 5/8],[1/sqrt(2) -1/sqrt(2)],’*’)

hold off

accomplishes this task. (See Figure 1.6.) The first three-argument call to plot uses a dashed line to produce
the graph of cos(2πx). Other line designations are possible (e.g., ’–’,’-.’). The second three-argument call
to plot places an asterisk at the intersection points (1/8, 1/

√
2) and (5/8,−1/

√
2). Other point designations

are possible (e.g., ’+’, ’.’, ’o’.) The key idea is that when plot is used to draw a graph, an optional third
parameter can be included that specifies the line style. This parameter is a string that specifies the “nature
of the pen” that is doing the drawing. Colors may also be specified. (See §1.7.6.) The superpositioning can
also be achieved as follows:

% Script File: SineAndCosPlot

% Plots the functions sin(2*pi*x) and cos(2*pi*x) across [0,1]

% and marks their intersection.

close all

x = linspace(0,1,200); y1 = sin(2*pi*x); y2 = cos(2*pi*x);

plot(x,y1,x,y2,’--’,[1/8 5/8],[1/sqrt(2) -1/sqrt(2)],’*’)

1.2. MORE VECTORS, MORE PLOTTING, AND NOW MATRICES 17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 1.6 Superpositioning

This illustrates plot’s “multigraph” capability. The syntax is as follows:

plot(〈First Graph Specification〉,...,〈Last Graph Specification〉)

where each graph specification has the form

〈Vector〉,〈Vector〉,〈String (optional)〉

If some of the string arguments are missing, then Matlab chooses them in a way that fosters clarity in the
overall plot.

1.2.3 Polygons

Suppose that we have a polygon with n vertices. If x and y are column vectors that contain the coordinate
values, then

plot(x,y)

does not display the polygon because (xn, yn) is not connected to (x1, y1). To rectify this we merely “tack
on” an extra copy of the first point:

x = [x;x(1)];

y = [y;y(1)];

plot(x,y)

Thus, the three points (1, 2), (4,−2), and (3, 7) could be represented with the three-vectors x = [1 4 3]

and y = [2 -2 7]. The x and y updates yield x = [1 4 3 1] and y = [2 -2 7 2]. Plotting the revised
y against the revised x displays the triangle with the designated vertices.

The preceding “concatenation” of a component to a vector is a special case of a general operation whereby
vectors can be glued together. If r1, r2,...,rm are row vectors, then

v = [r1 r2 ... rm]

is also a row vector obtained by placing the component vectors r1,...,rm side by side. For example,

v = [linspace(1,10,10) linspace(20,100,9)];

is equivalent to

v = [1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100];

18 CHAPTER 1. POWER TOOLS OF THE TRADE

Similarly, if c1, c2,..., cm are column vectors, then

v = [c1 ; c2 ; ... ; cm]

is also a column vector, obtained by stacking c1,...,cm.

Continuing with our polygon discussion, assume that we have executed the commands

t = linspace(0,2*pi,361);

c = cos(t);

s = sin(t);

plot(c,s)

axis off equal

The object displayed is a regular 360-gon with “radius” 1. The command axis equal ensures that the
x-distance per pixel is the same as the y-distance per pixel. This is important in this application because a
regular polygon would not look regular if the two scales were different.

With the preceding sine/cosine vectors computed, it is possible to display various other regular n-gons
simply by connecting appropriate subsets of points. For example,

x = [c(1) c(121) c(241) c(361)];

y = [s(1) s(121) s(241) s(361)];

plot(x,y)

plots the equilateral triangle whose vertices are at the 0o, 120o, and 240o points along the unit circle. This
kind of non-unit stride subvector extraction can be elegantly handled in Matlab using the colon notation.
The preceding triplet of commands is equivalent to

x = c(1:120:361);

y = s(1:120:361);

plot(x,y)

More generally, if sides is a positive integer that is a divisor of 360, then

x = c(1:(360/sides):361);

y = s(1:(360/sides):361);

plot(x,y)

plots a regular polygon with that number of sides. Here is a script that displays nine regular polygons in
nine separate subwindows:

% Script File: Polygons

% Plots selected regular polygons.

close all

theta = linspace(0,2*pi,361);

c = cos(theta);

s = sin(theta);

k=0;

for sides = [3 4 5 6 8 10 12 18 24]

stride = 360/sides;

k=k+1;

subplot(3,3,k)

plot(c(1:stride:361),s(1:stride:361))

axis equal

end

Figure 1.7 shows what is produced when this script is executed.

1.2. MORE VECTORS, MORE PLOTTING, AND NOW MATRICES 19

−1 0 1

−1

−0.5

0

0.5

1

−1 0 1

−1

−0.5

0

0.5

1

−1 0 1

−1

−0.5

0

0.5

1

−1 0 1

−1

−0.5

0

0.5

1

−1 0 1

−1

−0.5

0

0.5

1

−1 0 1

−1

−0.5

0

0.5

1

−1 0 1

−1

−0.5

0

0.5

1

−1 0 1

−1

−0.5

0

0.5

1

−1 0 1

−1

−0.5

0

0.5

1

Figure 1.7 Regular polygons

The key new feature in Polygons is subplot. The command subplot(3,3,k) says “break up the current
figure window into a 3-by-3 array of subwindows, and place the next plot in the kth one of these.” The
subwindows are indexed as follows:

1 2 3

4 5 6

7 8 9

In general, subplot(m,n,k) splits the current figure into an m-row by n-column array of subwindows that
are indexed left to right, top to bottom.

1.2.4 Some Matrix Computations

Let’s consider the problem of plotting the function

f(x) = 2 sin(x) + 3 sin(2x) + 7 sin(3x) + 5 sin(4x)

across the interval [−10, 10]. The scalar-level script

n = 200;

x = linspace(-10,10,n)’;

y = zeros(n,1);

for k=1:n

y(k) = 2*sin(x(k)) + 3*sin(2*x(k)) + 7*sin(3*x(k)) + 5*sin(4*x(k));

end

plot(x,y)

title(’f(x) = 2sin(x) + 3sin(2x) + 7sin(3x) +5sin(4x)’)

does the trick. (See Figure 1.8.) Notice that x and y are column vectors. The sin evaluations can be
vectorized giving this superior alternative:

n = 200;

x = linspace(-10,10,n)’;

y = 2*sin(x) + 3*sin(2*x) + 7*sin(3*x) + 5*sin(4*x);

plot(x,y)

title(’f(x) = 2sin(x) + 3sin(2x) + 7sin(3x) +5sin(4x)’)

20 CHAPTER 1. POWER TOOLS OF THE TRADE

−10 −8 −6 −4 −2 0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

15

20
f(x) = 2sin(x) + 3sin(2x) + 7sin(3x) +5sin(4x)

Figure 1.8 A sum of sines

But any linear combination of vectors is “secretly” a matrix-vector product. That is,

2





3
1
4
7
2
8




+ 3





5
0
3
8
4
2




+ 7





8
3
3
1
1
1




+ 5





1
6
8
7
0
9




=





3 5 8 1
1 0 3 6
4 3 3 8
7 8 1 7
2 4 1 0
8 2 1 9









2
3
7
5



 .

Matlab supports matrix-vector multiplication, and the script

A = [3 5 8 1; 1 0 3 6; 4 3 3 8; 7 8 1 7; 2 4 1 0; 8 2 1 9];

y = A*[2;3;7;5];

shows how to initialize a small matrix and engage it in a matrix-vector product. Note that the matrix is
assembled row by row with semicolons separating the rows. Spaces separate the entries within a row. An
ellipsis (...) can be used to spread a long command over more than one line, which is sometimes useful for
clarity:

A = [3 5 8 1;...

1 0 3 6;...

4 3 3 8;...

7 8 1 7;...

2 4 1 0;...

8 2 1 9];

y = A*[2;3;7;5];

In the sum-of-sines plotting problem, the vector y can also be constructed as follows:

n = 200; m = 4;

x = linspace(-10,10,n)’; A = zeros(n,m);

for j=1:m

for k=1:n

A(k,j) = sin(j*x(k));

end

end

y = A*[2;3;7;5];

plot(x,y)

title(’f(x) = 2sin(x) + 3sin(2x) + 7sin(3x) + 5sin(4x)’)

1.2. MORE VECTORS, MORE PLOTTING, AND NOW MATRICES 21

This illustrates how a matrix can be initialized at the scalar level. But a matrix is just an aggregation of its
columns, and Matlab permits a column-by-column synthesis, bringing us to the final version of our script:

% Script File: SumOfSines

% Plots f(x) = 2sin(x) + 3sin(2x) + 7sin(3x) + 5sin(4x)

% across the interval [-10,10].

close all

x = linspace(-10,10,200)’;

A = [sin(x) sin(2*x) sin(3*x) sin(4*x)];

y = A*[2;3;7;5];

plot(x,y)

title(’f(x) = 2sin(x) + 3sin(2x) + 7sin(3x) + 5sin(4x)’)

An expression of the form

[〈Column 1〉 〈Column 2〉 ... 〈Column m〉]

is a matrix with m columns. Of course, the participating column vectors must have the same length.

Another way to initialize A is to use a single loop whereby each pass sets up a single column:

n = 200;

m = 4;

A = zeros(n,m);

for j=1:m

A(:,j) = sin(j*x);

end

The notation A(:,j) names the jth column of A. Notice that the size of A is established with a call to zeros.
The size function can be used to determine the dimensions of any active variable. (Recall that all variables
are treated as matrices.) Thus, the script

A = [1 2 3;4 5 6];

[r,c] = size(A);

assigns 2 (the row dimension) to r and 3 (the column dimension) to c. Many Matlab functions return
more than one value and size is our first exposure to this. Note that the output values are enclosed with
square brackets.

Matrices can also be built up by row. In SumOfSines, the kth row of A is given by sin(x(k)*(1:4)) so
we also initialize A as follows:

n = 200;

m = 4;

A = zeros(n,m);

for k=1:n

A(k,:) = sin(x(k)*(1:m));

end

The notation A(k,:) identifies the kth row of A.

As a final example, suppose that we want to plot both of the functions

f(x) = 2 sin(x) + 3 sin(2x) + 7 sin(3x) + 5 sin(4x)

g(x) = 8 sin(x) + 2 sin(2x) + 6 sin(3x) + 9 sin(4x)

in the same window. Obviously, a double application of the preceding ideas solves the problem:

22 CHAPTER 1. POWER TOOLS OF THE TRADE

n = 200;

x = linspace(-10,10,n)’;

A = [sin(x) sin(2*x) sin(3*x) sin(4*x)];

y1 = A*[2;3;7;5];

y2 = A*[8;2;6;9];

plot(x,y1,x,y2)

But a set of matrix-vector products that involve the same matrix is “secretly” a single matrix-matrix product:

[
1 2
3 4

] [
5
7

]
=

[
19
43

]

[
1 2
3 4

] [
6
8

]
=

[
22
50

]






≡
[

1 2
3 4

] [
5 6
7 8

]
=

[
19 22
43 50

]
.

Since Matlab supports matrix-matrix multiplication, our script transforms to

n = 200;

x = linspace(-10,10,n)’;

A = [sin(x) sin(2*x) sin(3*x) sin(4*x)];

y = A*[2 8;3 2;7 6;5 9];

plot(x,y(:,1),x,y(:,2))

But the plot function can accept matrix arguments. The command

plot(x,y(:,1),x,y(:,2))

is equivalent to

plot(x,y)

and so we obtain

% Script File: SumOfSines2

% Plots the functions

% f(x) = 2sin(x) + 3sin(2x) + 7sin(3x) + 5sin(4x)

% g(x) = 8sin(x) + 2sin(2x) + 6sin(3x) + 9sin(4x)

% across the interval [-10,10].

close all

n = 200;

x = linspace(-10,10,n)’;

A = [sin(x) sin(2*x) sin(3*x) sin(4*x)];

y = A*[2 8;3 2;7 6;5 9];

plot(x,y)

In general, plotting a matrix against a vector is the same thing as plotting each of the matrix columns against
the vector. Of course, the row dimension of the matrix must equal the length of the vector.

It is also possible to plot one matrix against another. If X and Y have the same size, then the corresponding
columns will be plotted against each other with the command plot(X,Y).

Finally, we mention the “backslash” operator that can be invoked whenever the solution to a linear
system of algebraic equations is required. For example, suppose we want to find scalars α1, . . . , α4 so that if

f(x) = α1 sin(x) + α2 sin(2x) + α3 sin(3x) + α4 sin(4x),

then f(1) = −2, f(2) = 0, f(3) = 1, and f(4) = 5. These four stipulations imply

1.2. MORE VECTORS, MORE PLOTTING, AND NOW MATRICES 23

α1 sin(1) + α2 sin(2) + α3 sin(3) + α4 sin(4) = −2
α1 sin(2) + α2 sin(4) + α3 sin(6) + α4 sin(8) = 0
α1 sin(3) + α2 sin(6) + α3 sin(9) + α4 sin(12) = 1
α1 sin(4) + α2 sin(8) + α3 sin(12) + α4 sin(16) = 5

That is,





sin(1) sin(2) sin(3) sin(4)
sin(2) sin(4) sin(6) sin(8)
sin(3) sin(6) sin(9) sin(12)
sin(4) sin(8) sin(12) sin(16)









α1

α2

α3

α4



 =





−2
0
1
5



 .

Here is how to set up and solve this 4-by-4 linear system:

X = [1 2 3 4 ; 2 4 6 8 ; 3 6 9 12 ; 4 8 12 16];

Z = sin(X);

f = [-2; 0; 1; 5]

alpha = Z\f

Observe that sin applied to a matrix returns the matrix of corresponding sine evaluations. This is typical of
many of Matlab’s built-in functions. For linear system solving, the backslash operator requires the matrix
of coefficients on the left and the right hand side vector (as a column) on the right. The solution to the
preceding example is

α =





−0.2914
−8.8454
−18.8706
−11.8279



 .

Problems

P1.2.1 Suppose z = [10 40 20 80 30 70 60 90]. Indicate the vectors that are specified by z(1:2:7), z(7:-2:1), and z([3 1

4 8 1]).

P1.2.2 Suppose z = [10 40 20 80 30 70 60 90]. What does this vector look like after each of these commands?

z(1:2:7) = zeros(1,4)

z(7:-2:1) = zeros(1,4)

z([3 4 8 1]) = zeros(1,4)

P1.2.3 Given that the commands

x = linspace(0,1,200);

y = sqrt(1-x.^2);

have been carried out, show how to produce a plot of the circle x2 +y2 = 1 without any additional square roots or trigonometric
evaluations.

P1.2.4 Produce a single plot that displays the graphs of the functions sin(kx) across [0,2π], k = 1:5.

P1.2.5 Assume that m is an initialized positive integer. Write a Matlab script that plots in a single window the functions x,
x2, x3, . . . , xm across the interval [0,1].

P1.2.6 Assume that x is an initialized Matlab array and that m is a positive integer. Using the ones function, the pointwise
array multiply operator .*, and Matlab’s ability to scale and add arrays, write a fragment that computes an array y with the
property that the ith component of y has the following value:

yi =

m
X

k=0

xk
i

k!
.

24 CHAPTER 1. POWER TOOLS OF THE TRADE

P1.2.7 Write a Matlab fragment to plot the following ellipses in the same window:

Ellipse 1: x1(t) = 3 + 6 cos(t) y1(t) = −2 + 9 sin(t)
Ellipse 2: x2(t) = 7 + 2 cos(t) y2(t) = 8 + 6 sin(t)

P1.2.8 Consider the following Matlab script:

x = linspace(0,2*pi);

y = sin(x);

plot(x/2,y)

hold on

for k=1:3

plot((k*pi)+x/2,y)

end

hold off

What function is plotted and what is the range of x?

P1.2.9 Assume that x, y, and z are Matlab arrays initialized as follows:

x = linspace(0,2*pi,100);

y = sin(x);

z = exp(-x);

Write a Matlab fragment that plots the function e−x sin(x) across the interval [0,4π]. The fragment should not involve
any additional calls to sin or exp. Hint: exploit the fact that sin has period 2π and that the exponential function satisfies
ea+b = eaeb .

P1.2.10 Modify the script SumOfSines so that f(x) = 2 sin(x) + 3 sin(2x) + 7 sin(3x) + 5 sin(4x) is plotted in one window and
its derivative in another. Use subplot placing one window above the other. Your implementation should not involve any loops
and should have appropriate titles on the plots.

1.3 Building Exploratory Environments

A consequence of Matlab’s friendliness and versatility is that it encourages the exploration of mathematical
and algorithmic ideas. Many computational scientists like to precede the rigorous analysis of a problem with
Matlab-based experimentation. We use three examples to show this, learning many new features of the
system as we go along.

1.3.1 The Up/Down Sequence

Suppose x1 is a given positive integer and that for k ≥ 1 we define the sequence x1, x2, . . . as follows:

xk+1 =






xk/2 if xk is even

3xk + 1 if xk is odd
.

Thus, if x1 = 7, then the following sequence unfolds:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1,

We will call this the up/down sequence for obvious reasons. Note that it cycles once the value of 1 is reached.
A number of interesting questions are suggested:

• Does the sequence always reach the cycling stage?

• Let n be the smallest index for which xn = 1. How does n behave as a function of the initial value x1?

• Are there any systematic patterns in the sequence worth noting?

Our goal is to develop a script file that can be used to shed light on these and related issues.
We start with a script that solicits a starting value and then generates the sequence, assembling the

values in a vector x:

1.3. BUILDING EXPLORATORY ENVIRONMENTS 25

x(1) = input(’Enter initial positive integer:’);

k = 1;

while (x(k) ~= 1)

if rem(x(k),2) == 0

x(k+1) = x(k)/2;

else

x(k+1) = 3*x(k)+1;

end

k = k+1;

end

The input command is used to set up x(1). It has the form

input(〈string message〉)

and prompts for keyboard input. For example,

Enter initial positive integer:

Whatever number you type, it is assigned to x(1).
After x(1) is initialized, the generation of the sequence takes place under the auspices of a while-loop.

Each pass through the loop requires a test of the current x(k) in accordance with the rule for x(k+1) given
earlier. This is handled by an if-then-else.

Let’s look at the details. In Matlab, a test of the form x(k)==10 renders a one if it is true and a zero
if it is false.1 All the usual comparisons are supported:

Notation Meaning

< less than
<= less than or equal
== equal
>= greater than or equal
> greater than

~= not equal

A while-loop has the form

while 〈Condition〉
〈Statements〉

end

An if-then-else is structured as follows:

if 〈Condition〉
〈Statements〉

else

〈Statements〉
end

Both of these control structures operate in the usual way. The condition is numerically valued, and is
interpreted as true if it is nonzero.

The remainder function rem is used to check whether or not x(k) is even. Assuming that a and b are
positive integers, a call of the form rem(a,b) returns the remainder when b is divided into a.

Now one of the things we do not know is whether or not the up/down sequence reaches 1. To guard
against the production of an unacceptably large x-vector, we can put a limit on how many terms to generate.
Setting that limit to 500 and presizing x to that length, we obtain

1Remember, there is no boolean type in Matlab.

26 CHAPTER 1. POWER TOOLS OF THE TRADE

x = zeros(500,1);

x(1) = input(’Enter initial positive integer:’);

k = 1;

while ((x(k) ~= 1) & (k < 500))

if rem(x(k),2) == 0

x(k+1) = x(k)/2;

else

x(k+1) = 3*x(k)+1;

end

k = k+1;

end

n = k;

x = x(1:n);

The index of the first sequence member that equals 1 is assigned to n and x is “trimmed” to that length
with the assignment x = x(1:n). Notice the use of the and operator & in the while-loop condition. The
and, or, and not operations are all possible in Matlab :

Notation Meaning
& and
| or
~ not

xor exclusive or

The usual definitions apply with the understanding that 1 and 0 are used for true and false respectively.
Thus (x(k) == 1) & (k < 500)) has the value of 1 if x(k) equals 1 and k is strictly less than 500. If either
of these conditions is false, then the logical expression equals 0.

Computing x(1:n) brings us to the stage where we must decide how to display it and its properties. Of
course, we could display the vector simply by leaving off the semicolon in x = x(1:n);. Alternatively, we
can make use of fprintf’s vectorizing capability:

fprintf(’%10d\n’,x)

When a vector like x is passed to fprintf in this way. it just keeps cycling through the format string until
every vector component is processed.

Among the numerical properties of x that are interesting are the maximum value and the number of
integers ≤ x1 that are “hit” by the up/down process:

[xmax,imax] = max(x);

disp(sprintf(’\n x(%1.0f) = %1.0f is the max.’,imax,xmax))

density = sum(x<=x(1))/x(1);

disp(sprintf(’ The density is %5.3f.’,density))

When the max function is applied to a vector, it returns the maximum value and the index where it occurs.
It is also possible to use max in an expression. For example,

GrowthFactor = max(x)/x(1)

assigns to GrowthFactor the ratio of the largest value in x to x(1). Notice the use of the 1.0f format. For
integers greater than one digit in length, extra space is accorded as necessary. This ensures that there is no
gap between the displayed subscript and the right parenthesis, a small aesthetic point.

The assignment to density requires two explanations. First, it is legal to compare vectors in Matlab.
The comparison x<=x(1) returns a vector of 0’s and 1’s that is the same size as x. If x(k) <= x(1) is true,
then the kth component of this vector is one. The sum function applied to a vector sums its entries. Thus
sum(x<=x(1)) is precisely the number of components in x that are less than or equal to x(1).

Graphical display is also in order and can help us appreciate the “flow of events” as the sequence winds
its way to unity:

1.3. BUILDING EXPLORATORY ENVIRONMENTS 27

close all

figure

plot(x)

title(sprintf(’x(1) = %1.0f, n = %1.0f’,x(1),n));

figure

plot(sort(x,’descend’))

title(’Sequence values sorted.’)

I = find(rem(x(1:n-1),2));

if length(I)>1

figure

plot((1:n),zeros(1,n),I+1,x(I+1),I+1,x(I+1),’*’)

title(’Local Maxima’)

end

This script involves a number of new features. First, the command plot(x) plots the components of x

against their indices. It is equivalent to plot((1:n)’,x).
Second, the sort function is used to produce a plot of the sequence with its values ordered from small

to large. If v is a vector with length m, then u = sort(v) permutes the values in v and assigns them to u so
that

u1 ≤ u2 ≤ u3 ≤ · · · ≤ um.

The command sort(x,’descend’) produces a “big-to-little” sort.
Third, the expression rem(x(1:n-1),2) == 1 returns a 0-1 vector that designates which components of

x(1:n-1) are odd. The function rem, like many of Matlab’s built-in functions, accepts vector arguments
and merely returns a vector of the function applied to each of the components. The find function returns
a vector of subscripts that designate which entries in a vector are nonzero. Thus, if

x(1:n-1) = [17 52 26 13 40 20 10 5 16 8 4 2]’

and r = rem(x(1:n-1),2) and I = find(r), then

r(1:n-1) = [1 0 0 1 0 0 0 1 0 0 0 0]’

and I = [1 4 8]’. If the vector I is nonempty, then a plot of I+1 is produced showing the pattern of the
sequence’s “local maxima.” (The vector I+1 contains the indices of values in x(1:n-1) that are produced
by the “up operation” 3xk + 1.)

The last thing to discuss is figure. In all prior examples, our plots have appeared in a single window.
New plots erase old ones. But with each reference to figure, a new window is opened. Figures are indexed
from 1 and so figure(1) refers to a plot of x, figure(2) designates the plot of x sorted, and if I is nonempty,
then figure(3) contains a plot of its local maxima. The close all statement clears all windows and ensures
that the figure indexing starts at 1.

The script UpDown incorporates all of these features and by repeatedly running it we could bolster our
intuition about the up/down sequence. To make this enterprise more convenient, we write a second script
file that invokes UpDown:

% Script File: RunUpDown

% Environment for studying the up/down sequence.

% Stores selected results in file UpDownOutput.

while(input(’Another Example? (1=yes, 0=no)’))

diary UpDownOutput

UpDown

diary off

if (input(’Keep Output? (1=yes, 0=no)’)~=1)

delete UpDownOutput

end

end

28 CHAPTER 1. POWER TOOLS OF THE TRADE

By using this script we can keep trying new starting values until one of special interest is found. The
while-loop keeps running as long as you want to test another starting value. Before UpDown is run, the

diary UpDownOutput

command creates a file called UpDownOutput. Everything that is now written to the command window during
the execution of UpDown is now also written to UpDownOutput. After UpDown is run, we turn off this feature
with

diary off

The script then asks if the output should be kept. If not, then the file UpDownOutput is deleted. Note that
it is possible to record several possible runs of UpDown, but as soon as the if condition is true, everything
is erased. The advantage of writing output to a file is that it can then be edited to make it look nice. For
example,

For starting value x(1) = 511, the UpDown sequence is

x(1:62) =

511 1534 767 2302 1151 3454 1727 5182 2591 7774

3887 11662 5831 17494 8747 26242 13121 39364 19682 9841

29524 14762 7381 22144 11072 5536 2768 1384 692 346

173 520 260 130 65 196 98 49 148 74

37 112 56 28 14 7 22 11 34 17

52 26 13 40 20 10 5 16 8 4

2 1

The figures from the final UpDown run are available for printing as well.

1.3.2 Random Processes

Many simulations performed by computational scientists involve random processes. In order to implement
these on a computer, it is necessary to be able to generate sequences of random numbers. In Matlab this is
done with the built-in functions rand and randn. The command x = rand(1000,1) creates a length-1000
column vector of real numbers chosen randomly from the interval (0, 1). The uniform(0, 1) distribution is
used, meaning that if 0 < a < b < 1, then the fraction of values that fall in the range [a, b] will be about b−a.
The randn function should be used if a sequence of normally distributed random numbers is desired. The
underlying probability distribution is the normal(0, 1) distribution. A brief, graphically oriented description
of these functions should clarify their statistical properties.

Histograms are a common way of presenting statistical data. Here is a script that illustrates rand and
randn using this display technique:

% Script File: Histograms

% Histograms of rand(1000,1) and randn(1000,1).

close all

subplot(2,1,1)

x = rand(1000,1);

hist(x,30)

axis([-1 2 0 60])

title(’Distribution of Values in rand(1000,1)’)

xlabel(sprintf(’Mean = %5.3f. Median = %5.3f.’,mean(x),median(x)))

subplot(2,1,2)

x = randn(1000,1);

hist(x,linspace(-2.9,2.9,100))

title(’Distribution of Values in randn(1000,1)’)

xlabel(sprintf(’Mean = %5.3f. Standard Deviation = %5.3f’,mean(x),std(x)))

1.3. BUILDING EXPLORATORY ENVIRONMENTS 29

−1 −0.5 0 0.5 1 1.5 2
0

10

20

30

40

50

60
Distribution of Values in rand(1000,1)

Mean = 0.502. Median = 0.510.

−3 −2 −1 0 1 2 3
0

5

10

15

20

25

30

35
Distribution of Values in randn(1000,1)

Mean = −0.043. Standard Deviation = 0.943

Figure 1.9 The uniform and normal distributions

(See Figure 1.9.) Notice that rand picks values uniformly from [0, 1] while the distribution of values in
randn(1000,1) follows the familiar “bell shaped curve.” The mean, median, and standard deviation func-
tions mean, median, and std are referenced. The histogram function hist can be used in several ways
and the script shows two of the possibilities. A reference like hist(x,30) reports the distribution of the
x-values according to where they “belong” with respect to 30 equally spaced bins spread across the interval
[min(x), max(x)]. The bin locations can also be specified by passing hist a vector in the second param-
eter position (e.g., hist(x,linspace(-2.9,2.9,100))). This is done for the histogram of the normally
distributed data.

Building on rand and randn through translation and scaling, it is possible to produce random sequences
with specified means and variances. For example,

x = 10 + 5*rand(n,1);

generates a sequence of uniformly distributed numbers from the interval (10, 15). Likewise,

x = 10 + 5*randn(n,1);

produces a sequence of normally distributed random numbers with mean 10 and standard deviation 5.
It is possible to generate random integers using rand (or randn) and the floor function. The command

z = floor(6*rand(n,1)+1) computes a random vector of integers selected from {1, 2, 3, 4, 5, 6} and assigns
them to z. This is because floor rounds to −∞. The command z = ceil(6*x) is equivalent because ceil

rounds toward +∞. In either case, the vector z looks like a recording of n dice throws. Notice that floor

and ceil accept vector arguments and return vectors of the same size. (See also fix and round.) Here is a
script that simulates 1000 rolls of a pair of dice, displaying the outcome in histogram form:

% Script File: Dice

% Simulates 1000 rollings of a pair of dice.

close all

First = 1 + floor(6*rand(1000,1));

Second = 1 + floor(6*rand(1000,1));

Throws = First + Second;

hist(Throws, linspace(2,12,11));

title(’Outcome of 1000 Dice Rolls.’)

30 CHAPTER 1. POWER TOOLS OF THE TRADE

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 1.10 A target

Random simulations can be used to answer “nonrandom” questions. Suppose we throw n darts at the
circle-in-square target depicted in Figure 1.10. Assume that the darts land anywhere on the square with
equal probability and that the square has side 2 and center (0, 0). After a large number of throws, the
fraction of the darts that land inside the circle should be approximately equal to π/4, the ratio of the circle
area to the square’s area. Thus,

π ≈ 4
Number of Throws Inside the Circle

Total Number of Throws
.

By simulating the throwing of a large number of darts, we can produce an estimate of π. Here is a script
file that does just that:

0 50 100 150 200 250 300 350 400 450 500
3.08

3.1

3.12

3.14

3.16

3.18

3.2

3.22

3.24

3.26
Monte Carlo Estimate of Pi = 3.157

Hundreds of Trials

Figure 1.11 A Monte Carlo estimate of π

1.3. BUILDING EXPLORATORY ENVIRONMENTS 31

% Script File: Darts

% Estimates pi using random dart throws.

close all

rand(’seed’,.123456);

NumberInside = 0;

PiEstimate = zeros(500,1);

for k=1:500

x = -1+2*rand(100,1);

y = -1+2*rand(100,1);

NumberInside = NumberInside + sum(x.^2 + y.^2 <= 1);

PiEstimate(k) = (NumberInside/(k*100))*4;

end

plot(PiEstimate)

title(sprintf(’Monte Carlo Estimate of Pi = %5.3f’,PiEstimate(500)));

xlabel(’Hundreds of Trials’)

(See Figure 1.11.) Notice that the estimated values are gradually improving with n, but that the “progress”
towards 3.14159... is by no means steady or fast. Simulation in this spirit is called Monte Carlo. The
command rand(’seed’,.123456) starts the random number sequence with a prescribed seed. This enables
one to repeat the random simulation with exactly the same sequence of underlying random numbers.

The any and all functions indicate whether any or all of the components of a vector are nonzero. Thus,
if x and y are vectors of the same length, then a = any(x.̂2 + y.̂2 <= 1) assigns to a the value “1” if
there is at least one (xi, yi) in the unit circle and “0” otherwise. Similarly, b = all(x.̂2 + y.̂2 <= 1)

assigns “1” to b if all the (xi, yi) are in the unit circle and assigns “0” otherwise.

1.3.3 Polygon Smoothing

If x and y are n + 1-vectors (of the same type) and x1 = xn+1 and y1 = yn+1, then plot(x,y,x,y,’*’)

displays the polygon obtained by connecting the points (x1, y1), . . . , (xn+1, yn+1) in order. If we compute

xnew = [(x(1:n)+x(2:n+1))/2;(x(1)+x(2))/2];

ynew = [(y(1:n)+y(2:n+1))/2;(y(1)+y(2))/2];

plot(xnew,ynew)

then a new polygon is displayed that is obtained by connecting the side midpoints of the original polygon.
We wish to explore what happens when this process is repeated.

The first issue that we have to deal with is how to specify the “starting polygon” such as the one displayed
in Figure 1.12. One approach is to use the ginput command that supports mouseclick input. It returns the
x-y-coordinates of the click with respect to the current axis. Under the control of a for-loop an assignment
of the form [x(k),y(k)] = ginput(1) could be used to places the coordinates of the kth vertex in x(k)

and y(k), e.g.,

n = input(’Enter the number of edges:’);

figure

axis([0 1 0 1])

axis square

hold on

x = zeros(n,1);

y = zeros(n,1);

for k=1:n

title(sprintf(’Click in %2.0f more points.’,n-k+1))

[x(k) y(k)] = ginput(1);

plot(x(1:k),y(1:k), x(1:k),y(1:k),’*’)

end

32 CHAPTER 1. POWER TOOLS OF THE TRADE

x = [x;x(1)];

y = [y;y(1)];

plot(x,y,x,y,’*’)

title(’The Original Polygon’)

hold off

The for-loop displays the sides of the polygon as it is “built up.” If we did not care about this kind of
graphical feedback as we click in the vertices, then the command [x,y] = ginput(n) could be used. This
just stores the coordinates of the next n mouseclicks in x and y. Notice how we set up an “empty” figure
with a prescribed axis in advance of the data acquisition.

Now that vertices of the starting polygon are available, the connect-the-midpoint process can begin:

k=0;

xlabel(’Click inside window to smooth, outside window to quit.’)

[a,b] = ginput(1);

v = axis;

while (v(1)<=a) & (a<=v(2)) & (v(3)<=b) & (b<=v(4));

k = k+1;

x = [(x(1:n)+x(2:n+1))/2;(x(1)+x(2))/2];

y = [(y(1:n)+y(2:n+1))/2;(y(1)+y(2))/2];

m = max(abs([x;y])); x = x/m; y = y/m;

figure

plot(x,y,x,y,’*’)

axis square

title(sprintf(’Number of Smoothings = %1.0f’,k))

xlabel(’Click inside window to smooth, outside window to quit.’)

v = axis;

[a,b] = ginput(1);

end

The command v = axis assigns to v a 4-vector [xmin, xmax, ymin, ymax] that specifies the x and y ranges of
the current figure. The while-loop that oversees the process terminates as soon as the solicited mouseclick
falls outside the plot window. The polygons are scaled so that they are roughly the same size.

Once the execution of the loop is completed, the evolution of the smoothed polygons can be reviewed
by using figure. For example, the command figure(2) displays the polygon after two smoothings. (See
Figure 1.13.) This works because a new figure is generated each pass through the while-loop so in effect,
each plot is saved. The script Smooth encapsulates the whole process.

Problems

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The Original Polygon

Figure 1.12 The initial polygon

1.4. ERROR 33

0.65 0.7 0.75 0.8 0.85 0.9
0.7

0.75

0.8

0.85

0.9

0.95

1
Number of Smoothings = 7

Click inside window to smooth, outside window to quit.

Figure 1.13 A smoothed polygon

P1.3.1 Suppose {xi} is the up/down sequence with x1 = m. Let g(m) be the index of the first xi that equals one. Plot the
values of g for m = 1:200.

P1.3.2 Consider the quadratic equation ax2 + bx + c = 0. Let P1 be the probability that this equation has complex roots,
given that the coefficients are random variables with uniform(0,1) distribution. Let P1(n) be a Monte Carlo estimate of this
probability based on n trials. Let P2 be the probability that this equation has complex roots given that the coefficients are
random variables with normal(0,1) distribution. Let P2(n) be a Monte Carlo estimate of this probability based on n trials.
Write a script that prints a nicely formatted table that reports the value of P1(n) and P2(n) for n = 100:100:800.

P1.3.3 Write a simulation that estimates the volume of {(x1, x2, x3, x4) : x2
1+x2

2+x2
3+x2

4 ≤ 1}, the unit sphere in 4-dimensional
space.

P1.3.4 Let S = { (x, y) | − 1 ≤ x ≤ 1, −1 ≤ y ≤ 1}. Let S0 be the set of points in S that are closer to the point (.2, .4) than
to an edge of S. Write a Matlab script that estimates the area of S0.

1.4 Error

Errors abound in scientific computation. Rounding errors attend floating point arithmetic, terminal screens
are granular, analytic derivatives are approximated with divided differences, a polynomial is used in lieu
of the sine function, the data acquired in a lab are correct to only three significant digits, etc. Life in
computational science is like this, and we have to build up a facility for dealing with it. In this section we
focus on the mathematical errors that arise through discretization and the rounding errors that arise due to
finite precision arithmetic.

1.4.1 Absolute and Relative Error

If x̃ approximates a scalar x, then the absolute error in x̃ is given by |x̃− x| while the relative error is given
by |x̃ − x|/|x|. If the relative error is about 10−d, then x̃ has approximately d correct significant digits in
that there exists a number τ having the form

τ = ±(. 00 . . .0︸ ︷︷ ︸
d zeros

nd+1nd+2 . . .) × 10g

so that x̃ = x + τ . (Here, g is some integer.)
As an exercise in relative and absolute error, let’s examine the quality of the Stirling approximation

Sn =
√

2πn
(n

e

)n

, e = exp(1).

34 CHAPTER 1. POWER TOOLS OF THE TRADE

to the factorial function n! = 1 · 2 · · ·n. Here is a script that produces a table of errors:

% Script File: Stirling

% Prints a table showing error in Stirling’s formula for n!

clc

disp(’ Stirling Absolute Relative’)

disp(’ n n! Approximation Error Error’)

disp(’--’)

e = exp(1);

nfact = 1;

for n = 1:13

nfact = n*nfact;

s = sqrt(2*pi*n)*((n/e)^n);

abserror = abs(nfact - s);

relerror = abserror/nfact;

s1 = sprintf(’ %2.0f %10.0f %13.2f’,n,nfact,s);

s2 = sprintf(’ %13.2f %5.2e’,abserror,relerror);

disp([s1 s2])

end

Notice how the strings s1 and s2 are concatenated before they are displayed. In general, you should think
of a string as a row vector of characters. Concatenation is then just a way of obtaining a new row vector
from two smaller ones. This is the logic behind the required square bracket.

The command clc clears the command window and moves the cursor to the top. This ensures that the
table produced is profiled nicely in the command window. Here it is:

Stirling Absolute Relative

n n! Approximation Error Error

--

1 1 0.92 0.08 7.79e-02

2 2 1.92 0.08 4.05e-02

3 6 5.84 0.16 2.73e-02

4 24 23.51 0.49 2.06e-02

5 120 118.02 1.98 1.65e-02

6 720 710.08 9.92 1.38e-02

7 5040 4980.40 59.60 1.18e-02

8 40320 39902.40 417.60 1.04e-02

9 362880 359536.87 3343.13 9.21e-03

10 3628800 3598695.62 30104.38 8.30e-03

11 39916800 39615625.05 301174.95 7.55e-03

12 479001600 475687486.47 3314113.53 6.92e-03

13 6227020800 6187239475.19 39781324.81 6.39e-03

1.4.2 Taylor Approximation

The partial sums of the exponential satisfy

ex =
n∑

k=0

xk

k!
+

eη

(n + 1)!
xn+1

for some η in between 0 and x. The mathematics says that if we take enough terms, then the partial sums
converge. The script ExpTaylor explores this by plotting the partial sum relative error as a function of n.

1.4. ERROR 35

% Script File: ExpTaylor

% Plots, as a function of n, the relative error in the

% Taylor approximation 1 + x + x^2/2! +...+ x^n/n! to exp(x).

close all

nTerms = 50;

for x=[10 5 1 -1 -5 -10]

figure

term = 1; s = 1; f = exp(x)*ones(nTerms,1);

for k=1:nTerms, term = x.*term/k; s = s+ term; err(k) = abs(f(k) - s); end

relerr = err/exp(x);

semilogy(1:nTerms,relerr)

ylabel(’Relative Error in Partial Sum.’)

xlabel(’Order of Partial Sum.’)

title(sprintf(’x = %5.2f’,x))

end

0 5 10 15 20 25 30 35 40 45 50
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

R
e

la
ti
v
e

 E
rr

o
r

in
 P

a
rt

ia
l
S

u
m

.

Order of Partial Sum.

x = 10.00

Figure 1.14 Error in Taylor approximations to ex, x = 10

When plotting numbers that vary tremendously in range, it is useful to use semilogy. It works just like
plot, only the base-10 log of the y-vector is displayed. ExpTaylor produces six figure windows, one each for
the six x-values. For example, the x = 10 plot is in figure 1. By entering the command figure(1), this plot
is “brought up” by making the Figure 1 window the active window. It could then (for example) be printed.
(See Figures 1.14 and 1.15.)

1.4.3 Rounding Errors

The plots produced by ExpTaylor reveal that the mathematical convergence theory does not quite apply.
The errors do not go to zero as the number of terms in the series increases. In each case, they seem to
“bottom out” at some small value. Once that happens, the incorporation of more terms into the partial sum
does not make a difference. Moreover, by comparing the plots in Figures 1.14 and 1.15, we observe that
where the relative error bottoms out depends on x. The relative error for x = −10 is much worse than for
x = 10.

An explanation of this phenomenon requires an understanding of floating point arithmetic. Like it or
not, numerical computation involves working with an inexact computer arithmetic system. This will force us
to rethink the connections between mathematics and the development of algorithms. Nothing will be simple
ever again.

36 CHAPTER 1. POWER TOOLS OF THE TRADE

To dramatize this point, consider the plot of a rather harmless looking function: p(x) = (x − 1)6. The
script Zoom graphs this polynomial over increasingly smaller neighborhoods around x = 1, but it uses the
formula

p(x) = x6 − 6x5 + 15x4 − 20x3 + 15x2 − 6x + 1.

0 5 10 15 20 25 30 35 40 45 50
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

R
e

la
ti
v
e

 E
rr

o
r

in
 P

a
rt

ia
l
S

u
m

.

Order of Partial Sum.

x = −10.00

Figure 1.15 Error in Taylor approximations to ex, x = −10

% Script File: Zoom

% Plots (x-1)^6 near x=1 with increasingly refined scale.

% Evaluation via x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x +1

% leads to severe cancelation.

close all

k = 0; n = 100;

for delta = [.1 .01 .008 .007 .005 .003]

x = linspace(1-delta,1+delta,n)’;

y = x.^6 - 6*x.^5 + 15*x.^4 - 20*x.^3 + 15*x.^2 - 6*x + ones(n,1);

k = k+1; subplot(2,3,k); plot(x,y,x,zeros(1,n))

axis([1-delta 1+delta -max(abs(y)) max(abs(y))])

end

Notice how the x-axis is plotted and how it is forced to appear across the middle of the window. (See Figure
1.16 for a display of the plots.) As we increase the “magnification,” a very chaotic behavior unfolds. It seems
that p(x) has thousands of zeros!

It turns out that if the plot is based on the formula (x − 1)6 instead of its expansion, then the expected
graph is displayed and this gets right to the heart of the example. Algorithms that are equivalent mathemat-
ically may behave very differently numerically. The time has come to look at floating point arithmetic.

1.4.4 The Floating Point Numbers

A nonzero value x in a base-2 floating point number system has the following form:

x = ±1.b1b2 . . . bt × βe L ≤ e ≤ U

1.4. ERROR 37

0.9 1 1.1

−5

0

5

x 10
−7

0.99 1 1.01
−1

−0.5

0

0.5

1
x 10

−12

0.995 1 1.005

−2

−1

0

1

2

x 10
−13

0.995 1 1.005

−1

−0.5

0

0.5

1

x 10
−13

0.995 1 1.005

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
−14

0.998 1 1.002

−5

0

5

x 10
−15

Figure 1.16 Plots of (x − 1)6 = x6 − 6x5 + 15x4 − 20x3 + 15x2 − 6x + 1 near x = 1

The bits b1, b2, . . . bt make up the mantissa. The exponent e is restricted to the interval [L, U]. Zero is also a
floating point number and we assume that in its representation both the mantissa and exponent are set to
zero.

We denote the set of floating point numbers by F(t, L, U). To emphasize the finiteness of this set, suppose
t = 2, L = −1 and U = +1. There are twelve positive floating point numbers:

x =






(1.00)2
(1.01)2
(1.10)2
(1.11)2





×






2−1

20

21




 .

The base-2 notation is not difficult. Thus, x = (1.01)2 × 21 represents

(
1 + 0 · 1

2
+ 1 · 1

4

)
× 2 = 2.5

There is a smallest positive floating point number (1.00 × 2−1 = .5) and a largest floating point number
(1.11 × 21 = 3.75). Moreover, the spacing between the floating point numbers is not uniform as can be seen
from this display of the positive portion of F(2,−1, 1):

0

t

1
2

t t t t

1

t t t t

2

t t t

4

Extrapolating from this small example we identify three important numbers associated with F(t, L, U):

m the smallest positive floating point number = 2L.

M the largest positive floating point number = (2 − 2−t)2U

eps the distance from 1 to the next largest floating point number = 2−t

Note that if x is a floating point number and 2e < x < 2e+1, then x−2e−t is its left “neighbor” and x+2e−t

is its right neighbor.

38 CHAPTER 1. POWER TOOLS OF THE TRADE

Now let us talk about the errors associated with the F(t, L, U) representation. If x is a real number, then
let fl(x) be the nearest floating point number to x. (Assume the existence of a tie-breaking rule.) Think of
fl(x) as the stored version of x. The following theorem bounds the relative error in fl(x).

Theorem 1 Suppose we are given a set of floating point numbers with mantissa length t and exponent range
[L, U]. If x ∈ IR satisfies m < |x| < M , then

|fl(x) − x|
|x| ≤ 2−t−1 = eps

Proof Without loss of generality, assume that x is positive and that

x = (1.b1b2 . . . btbt+1 . . .)2 × 2e.

If x is a power of two, then the theorem obviously holds since fl(x) = x and the relative error is zero.
Otherwise we observe that the spacing of the floating point numbers at x is 2e−t. Since fl(x) is the closest
floating number to x, we have

|fl(x) − x| ≤ 1

2
2e−t = 2e−t−1.

From the lower bound βe < x it follows that

|fl(x) − x|
|x| ≤ 2e−t−1

2e
= 2−t−1. �

Another way of saying the same thing is that

fl(x) = x(1 + δ)

where |δ| ≤ eps.
What are the values of t, L and U on a typical computer? For the widely implemented IEEE double

precision format, t = 52, L = −1022 and U = 1023. This representation fits into a 64-bit word because we
need one bit for the sign and because 11 bits are required to store e + 1023. (The last is a clever trick for
encoding the sign of the exponent.)

The quantity eps is referred to as the machine precision (a.k.a. unit roundoff) and is available in
Matlab through the built-in constant eps:

>> What_Is_eps = eps

What_Is_eps =

2.220446049250313e-016

Thus, in the IEEE floating point environment, eps = 2−52 ≈ 10−16.
IEEE floating point arithmetic is carefully designed so that when two floating point numbers are combined

via +, −, ×, or /, then the answer is the nearest floating point number to the exact answer. One way to say
this for any of these four “ops” is

fl(x opy) = (x op y)(1 + δ) |δ| ≤ eps

Thus, there is good relative error for an individual floating point operation. As we shall see, it does not

follow that sequences of floating point operations result in an answer that has O(eps) relative error.
Some simple while-loop computations can be used to glean information about the underlying floating

system. Here is a script that assigns the value of the smallest positive integer so 1 + 1/2p = 1 in floating
point arithmetic:

p = 0; y = 1; z = 1+y;

while z>1

y = y/2;

p = p+1;

z = 1+y;

end

1.4. ERROR 39

With IEEE arithmetic, p = 53. Stated another way, 1 + 1/252 can be represented exactly but 1 + 1/253

cannot.
The finiteness of the exponent range has ramifications too. A floating point operation can result in an

answer that is too big to represent. When this happens, it is called floating point overflow and a special
value called inf is produced. Here is a script that assigns to r the smallest positive integer so 2r = inf in
floating point arithmetic:

x = 1;

r = 0;

while x~=inf

x = 2*x;

r = r+1;

end

When IEEE arithmetic is used, r = 1024. In other words, 21023 can be represented but 21024 cannot.
At the other end of the scale, if a floating point operation renders a nonzero result that is too small to

represent, then an underflow results. In light of the fact that the smallest positive floating point number is
m = 2−1022 , we anticipate that the script

x = 1;

q = 0;

while x>0

x = x/2;

q = q+1;

end

would assign -1023 to q. However, the actual value that is assigned to q is 1075. This is because the IEEE
standard implements what is call gradual underflow meaning that the actual smallest floating point number
that can be represented is 2L−t = 2−1022−52 = 2−1074.

Sometimes these are just set to zero. Sometimes they result in program termination. Here is a script
that assigns to q the smallest positive integer so that 1/2q = 0 in floating point arithmetic:

Problems

P1.4.1 The binomial coefficient n-choose-k is defined by
„

n
k

«

=
n!

k!(n − k)!
.

Let Bn,k = Sn/(SkSn−k). Write a script analogous to Stirling that explores the error in Bn,k for the cases (n, k) =
(52,2), (52,3), . . . , (52,13). There are no set rules on output except that it should look nice and clearly present the results.

P1.4.2 The sine function has the power series definition

sin(x) =

∞
X

k=0

(−1)k x2k+1

(2k + 1)!
.

Write a script SinTaylor analogous to ExpTaylor that explores the relative error in the partial sums.

P1.4.3 Write a script that solicits n and plots both sin(x) and

Sn(x) =

n
X

k=0

(−1)k x2k+1

(2k + 1)!

across the interval [0,2π].

P1.4.4 To affirm your understanding of the floating point representation, what is the largest value of n so that n! can be exactly
represented in F(52,−1022,1023)? Show your work.

P1.4.5 On a base-2 machine, the distance between 7 and the next largest floating point number is 2−12. What is the distance
between 70 and the next largest floating point number?

P1.4.6 Assume that x and y are floating point numbers in F(t,−10, 10). What is the smallest possible value of y − x given
that x < 8 < y? (Your answer will involve t.)

40 CHAPTER 1. POWER TOOLS OF THE TRADE

P1.4.7 What is the largest value of k such that 10k can be represented exactly in F(52,−1022,1023)?

P1.4.8 What is the nearest floating point number to 64 on a base-2 computer with 5-bit mantissas? Show work.

P1.4.9 If 127 is the nearest floating point number to 128 on a base-2 computer, then how long is the mantissas? Show work.

1.5 Designing Functions

An ability to write good Matlab functions is crucial. Two examples are used to clarify the essential ideas:
Taylor series and numerical differentiation.

1.5.1 Four Ways to Compute the Exponential of a Vector of Values

Consider once again the Taylor approximation

Tn(x) =

n∑

k=0

xk

k!

to the exponential ex. It is possible to write functions in Matlab, and here is one that encapsulates this
approximation:

function y = MyExpF(x,n)

% y = MyExpF(x,n)

% x is a scalar, n is a positive integer

% and y = n-th order Taylor approximation to exp(x).

term = 1;

y = 1;

for k = 1:n

term = x*term/k;

y = y + term;

end

−1 −0.5 0 0.5 1
0

0.005

0.01

0.015

0.02
n = 4

−1 −0.5 0 0.5 1
0

1

2

3

4

5

6

7
x 10

−6 n = 8

−1 −0.5 0 0.5 1
0

2

4

6

8
x 10

−15 n = 16

−1 −0.5 0 0.5 1
0

1

2

3

4

5
x 10

−16 n = 20

Figure 1.17 Relative error in Tn(x)

The function itself must be placed in a separate .m file2 having the same name as the function, e.g., MyExpF.m.
Once that is done, it can be referenced like any of the built-in functions. Thus, the script

2Subfunctions are an exception. Enter help function for details.

1.5. DESIGNING FUNCTIONS 41

m = 50;

x = linspace(-1,1,m);

y = zeros(1,m);

exact = exp(x);

k = 0;

for n = [4 8 16 20]

for i=1:m

y(i) = MyExpF(x(i),n);

end

RelErr = abs(exact - y)./exact;

k = k+1;

subplot(2,2,k)

plot(x,RelErr)

title(sprintf(’n = %2.0f’,n))

end

plots the relative error in Tn(x) for n = 4, 8, 16, and 20 across [−1, 1]. (See Figure 1.17.)
When writing a Matlab function you must adhere to the following rules and guidelines:

• From the example we infer the following general structure for a Matlab function:

function 〈Output Parameter〉 = 〈Name of Function〉(〈Input Parameters〉)
%

% 〈Comments that completely specify the function.〉
%

〈function body〉

• Somewhere in the function body the desired value must be assigned to the output variable.

• Comments that completely specify the function should be given immediately after the function state-
ment. The specification should detail all input value assumptions (the pre-conditions) and what may
be assumed about the output value (the postconditions).

• The lead block of comments after the function statement is displayed when the function is probed
using help (e.g., help MyExpF).

• The input and output parameters are formal parameters. At the time of the call they are replaced by
the actual parameters.

• All variables inside the function are local and are not part of the Matlab workspace.

• If the function file is not in the current directory, then it cannot be referenced unless the appropriate
path is established. Type help path.

Further experimentation with MyExpF shows that if n = 17, then full machine precision exponentials are
computed for all x ∈ [−1, 1]. With this understanding about the Taylor approximation across [−1, 1], we are
ready to develop a “vector version”:

function y = MyExp1(x)

% y = MyExp1(x)

% x is a column vector and y is a column vector with the property that

% y(i) is a Taylor approximation to exp(x(i)) for i=1:n.

n = 17; p = length(x);

y = ones(p,1);

for i=1:p

y(i) = MyExpF(x(i),n);

end

42 CHAPTER 1. POWER TOOLS OF THE TRADE

This example shows several things: (1) A Matlab function can have vector arguments and can return a
vector, (2) the length function can be used to determine the size of an input vector, (3) one function can
reference another. Here is a script that references MyExp1:

x = linspace(-1,1,50);

exact = exp(x);

RelErr = abs(exact - MyExp1(x’)’)./exact;

Notice the transpose that is required to ensure that the vector passed to MyExp1 is a column vector. The
other transpose is required to make MyExp1(x’) a row vector so that it can be combined with exact. Here
is another implementation that is not sensitive to the shape of x:

function y = MyExp2(x)

% y = MyExp2(x)

% x is an n-vector and y is an n-vector with the same shape

% and the property that y(i) is a Taylor approximation to exp(x(i)), i=1:n.

y = ones(size(x));

nTerms = 17;

term = ones(size(x));

for k=1:nTerms

term = x.*term/k;

y = y + term;

end

The expression ones(size(x)) creates a vector of ones that is exactly the same shape as x. In general, the
command [p,q] = size(A) returns the number of rows and columns in A in p and q, respectively. If such a
2-vector is passed to ones, then the appropriate matrix of ones is established. (The same comment applies
to zeros.) The new implementation “doesn’t care” whether x is a row or column vector. The script

x = linspace(-1,1,50);

exact = exp(x);

RelErr = abs(exact - MyExp2(x))./exact;

produces a vector of relative error exactly the same size as x.
Notice the use of pointwise multiplication. In contrast to MyExp1 which computes the component-level

exponentials one at a time, MyExp2 computes them “at the same time.” In general, Matlab runs faster in
vector mode. Here is a script that quantifies this statement by benchmarking these two functions:

nRepeat = 100;

disp(’ Length(x) Time(MyExp2)/Time(MyExp1)’)

disp(’--’)

for L = 1000:100:1500

xL = linspace(-1,1,L);

tic

for k=1:nRepeat, y = MyExp1(xL); end

T1 = toc;

tic

for k=1:nRepeat, y = MyExp2(xL); end

T2 = toc;

disp(sprintf(’%6.0f %13.6f ’,L,T2/T1))

end

The script makes use of tic and toc. To time a code fragment, “sandwich” it in between a tic and a toc.
Keep in mind that the clock is discrete and is typically accurate to within a millisecond. Therefore, whatever
is timed should take somewhat longer than a millisecond to execute to ensure reliability. To address this
issue it is sometimes necessary to time repeated instances of the code fragment as above. Here are some
sample results:

1.5. DESIGNING FUNCTIONS 43

Length(x) Time(MyExp2)/Time(MyExp1)

1000 0.086525

1100 0.101003

1200 0.104044

1300 0.080007

1400 0.087395

1500 0.082073

It is important to stress that these are sample results. Different timings would result on different computers.
The for-loop implementations in MyExp1 and MyExp2 are flawed in two ways. First, the value of n chosen

is machine dependent. A different n would be required on a computer with a different machine precision.
Second, the number of terms required for an x value near the origin may be considerably less than 17. To
rectify this, we can use a while-loop that keeps adding in terms until the next term is less than or equal to
eps times the size of the current partial sum:

function y = MyExpW(x)

% y = MyExpW(x)

% x is a scalar and y is a Taylor approximation to exp(x).

y = 0;

term = 1;

k=0;

while abs(term) > eps*abs(y)

k = k + 1;

y = y + term;

term = x*term/k;

end

To produce a vector version, we can proceed as in MyExp1 and simply call MyExpW for each component:

function y = MyExp3(x)

% y = MyExp3(x)

% x is a column n-vector and y is a column n-vector with the property that

% y(i) is a Taylor approximation to exp(x(i)) for i=1:n.

n = length(x);

y = ones(n,1);

for i=1:n

y(i) = MyExpW(x(i));

end

Alternatively, we can follow the MyExp2 idea and vectorize as follows:

function y = MyExp4(x)

% y = MyExp4(x)

% x is an n-vector and y is an n-vector with the same shape and the

% property that y(i) is a Taylor approximation to exp(x(i)) for i=1:n.

y = zeros(size(x));

term = ones(size(x));

k = 0;

while any(abs(term) > eps*abs(y))

y = y + term;

k = k+1;

term = x.*term/k;

end

44 CHAPTER 1. POWER TOOLS OF THE TRADE

Observe the use of the any function. It returns a “1” as long as there is at least one component in abs(term)

that is larger than eps times the corresponding term in abs(y). If any returns a zero, then this means that
term is small relative to y. In fact, it is so small that the floating point sum of y and term is y. The
while-loop terminates as this happens.

1.5.2 Numerical Differentiation

Suppose f(x) is a function whose derivative we wish to approximate at x = a. A Taylor series expansion
about this point says that

f(a + h) = f(a) + f ′(a)h +
f ′′(η)

2
h2

for some η ∈ [a, a + h]. Thus,

Dh =
f(a + h) − f(a)

h

provides increasingly good approximations as h gets small since

Dh = f ′(a) + f ′′(η)
h

2
.

Here is a script that enables us to explore the quality of this approach when f(x) = sin(x):

a = input(’Enter a: ’);

h = logspace(-1,-16,16);

Dh = (sin(a+h) - sin(a))./h;

err = abs(Dh - cos(a));

Using this to find the derivative of sin at a = 1, we see the following:

h Absolute Error
1.0e-01 0.0429385533327507
1.0e-02 0.0042163248562708
1.0e-03 0.0004208255078129
1.0e-04 0.0000420744495186
1.0e-05 0.0000042073622750
1.0e-06 0.0000004207468094
1.0e-07 0.0000000418276911
1.0e-08 0.0000000029698852
1.0e-09 0.0000000525412660
1.0e-10 0.0000000584810365
1.0e-11 0.0000011687040611
1.0e-12 0.0000432402169239
1.0e-13 0.0007339159003137
1.0e-14 0.0037069761981869
1.0e-15 0.0148092064444385
1.0e-16 0.5403023058681398

The loss of accuracy may be explained as follows. Any error in the computation of the numerator of Dh is
magnified by 1/h. Let us assume that the values returned by sin are within eps of their true values. Thus,
instead of a precise calculus bound

|Dh − f ′(a)| ≤ h

2
|f ′′(η)|

1.5. DESIGNING FUNCTIONS 45

as predicted earlier, we have a heuristic bound

|Dh − f ′(a)| ≈ h

2
|f ′′(η)| + 2eps

h
.

The right-hand side incorporates the “truncation error” due to calculus and the computation error due to
roundoff. This quantity is minimized when h = 2

√
eps/|f ′′(η)|.

Let’s package these observations and write a function that does numerical differentiation. The key
analytical detail is the intelligent choice of h. If we have an upper bound on the second derivative of the
form |f ′′(x)| ≤ M2, then the truncation error can be bounded as follows:

|Dh − f ′(a)| ≤ M2

2
h. (1.1)

If the absolute error in a computed function evaluation is bounded by δ, then

errD(h) = M2
h

2
+

2δ

h

is a reasonable model for the total error. This quantity is minimized if

hopt = 2

√
δ

M2
,

giving

errD(hopt) = 2
√

δM2.

Here is a function that implements this idea:

function [d,err] = Derivative(f,a,delta,M2)

% f is a handle that references a function f(x) whose derivative

% at x = a is sought. delta is the absolute error associated with

% an f-evaluation and M2 is an estimate of the second derivative

% magnitude near a. d is an approximation to f’(a) and err is an estimate

% of its absolute error.

%

% Usage:

% [d,err] = Derivative(@f,a)

% [d,err] = Derivative(@f,a,delta)

% [d,err] = Derivative(@f,a,delta,M2)

if nargin <= 3

% No derivative bound supplied, so assume the

% second derivative bound is 1.

M2 = 1;

end

if nargin == 2

% No function evaluation error supplied, so

% set delta to eps.

delta = eps;

end

% Compute optimum h and divided difference

hopt = 2*sqrt(delta/M2);

d = (f(a+hopt) - f(a))/hopt;

err = 2*sqrt(delta*M2);

46 CHAPTER 1. POWER TOOLS OF THE TRADE

There are several new syntactic features associated with this implementation. We identify them through a
sequence of examples.

Example 1. Compute the derivative of f(x) = exp(x) at x = 5 . Assume that the exp function returns values
that are correct to machine precision and use the fact that the second derivative of f is bounded by 500:

[der_val,err_est] = Derivative(@exp,5,eps,500)

To hand over a function to Derivative, you pass its handle. This is simply the name of the function preceded
by the “at” symbol “@”. In effect @exp “points” to the exp function. Another aspect of this example is that
functions in Matlab can return more than one item: Just separate the output parameters with commas
and enclose with square brackets.

Example 2. Same as Example 1 only (pretend) that we cannot produce an upper bound on the second
derivative:

[der_val,err_est] = Derivative(@exp,5,eps)

The nargin command makes it possible to have abbreviated calls. In this case, Matlab “knows” that this is
a 2-argument call and substitutes a value for the missing input parameter.

Example 3. Same as Example 1 only you don’t care about the error estimate:

der_val = Derivative(@exp,5,eps,500)

In this case

Example 4. Assuming the existence of

function y = MyF(x,alfa,beta)

y = alfa*exp(beta*x);

estimate the derivative at x = 10 assuming that α = 20 and β = −2:

alfa = 20;

beta = -2;

der_val = Derivative(@(x) MyF(x,alfa,beta),10);

This illustrates the use of the anonymous function idea which is very useful when functions depend on
parameters.

Problems

P1.5.1 It can be shown that

Ch =
f(a + h) − f(a − h)

2h
satisfies

|Ch − f ′(a)| ≤ M3

6
h2

if
|f (3)(x)| ≤ M3

for all x. Model the error in the evaluation of Ch by

errC(h) =
M3h2

6
+ 2

δ

h
.

Generalize Derivative so that it has a 5th optional argument M3 being an estimate of the 3rd derivative. It should compute
f ′(a) using the better of the two approximations Dh and Ch.

P1.5.2 Consider the ellipse P (t) = (x(t), y(t)) with

x(t) = a cos(t)

y(t) = b sin(t)

1.5. DESIGNING FUNCTIONS 47

and assume that 0 = t1 < t2 < . . . < tn = π/2. Define the points Q1, . . . , Qn by

Qi = (x(ti), y(ti)).

Let Li be the tangent line to the ellipse at Qi. This line is defined by the parametric equations

x(t) = a cos(ti) − a sin(ti)t

y(t) = b sin(ti) + b cos(ti)t.

Next, define the points P0, . . . , Pn by

Pi =

8

<

:

(a,0) i = 0
intersection of Li and Li+1 i = 1 . . . n − 1
(0, b) i = n

.

For your information, if the lines defined by

x1(t) = α1 + β1t

y1(t) = γ1 + δ1t

x2(t) = α2 + β2t

y2(t) = γ2 + δ2t

intersect, then the point of their intersection (x∗, y∗) is given by

x∗ =
β2(α1δ1 − β1γ1) − β1(α2δ2 − β2γ2)

δ1β2 − β1δ2
and y∗ =

δ2(α1δ1 − β1γ1) − δ1(α2δ2 − β2γ2)

δ1β2 − β1δ2
.

Complete the following function:

function [P,Q] = Points(a,b,t)

% a and b are positive, n = length(t)>=2, and 0 = t(1) < t(2) <... < t(n) = pi/2.

% For i=1:n, (Q(i,1),Q(i,2)) is the ith Q-point and (P(i,1),P(i,2)) is the ith P point.

Write a script file that calls Points with a = 5, b = 2, and t = linspace(0,pi/2,4). The script should then plot in one window
the first quadrant portion of the ellipse, the polygonal line that connects the Q points, and the polygonal line that connects the
P points. Use title to display PL and QL, the lengths of these two polygonal lines, i.e., title(sprintf(’ QL = %10.6f PL =

%10.6f ’,QL,PL)).

P1.5.3 Write a Matlab function Ellipse(P,A,theta) that plots the “tilted” ellipse defined by

x(t) = cos(θ)

»

P − A

2
+

P + A

2
cos(t)

–

− sin(θ)
h√

A · P sin(t)
i

y(t) = sin(θ)

»

P − A

2
+

P + A

2
cos(t)

–

+ cos(θ)
h√

A · P sin(t)
i

for 0 ≤ t ≤ 2π. Your implementation should not have any loops.

P1.5.4 For a scalar z and a nonnegative integer n define

f(z, n) =
n

X

k=0

(−1)k z2k+1

(2k + 1)!
.

This is an approximation to the function sin(z). Write a Matlab function y = MySin(x,n) that accepts a vector x and a
nonnegative integer n and returns a vector y with the same size and orientation as x and with the property that yi = f(xi, n)
for i = 1:length(x). The implementation should not involve any loops. Write a script that graphically reports on the relative
error when MySin is applied to x = linspace(.01,pi-.01) for n=3:2:9. Use semilogy and present the four plots in a single
window using subplot. To avoid log(0) problems, plot the maximum of the true relative error and eps. Label the axes. The
title should indicate the value of n and the number of flops required by the call to MySin.

P1.5.5 Using tic and toc, plot the relative error in pause(k) for k = 1:10.

P1.5.6 Complete the following Matlab function

function [cnew,snew] = F(c,s,a,b)

% a and b are scalars with a<b. c and s are row (n+1)-vectors with the property that

% c = cos(linspace(a,b,n+1)) and s = sin(linspace(a,b,n+1))

%

% cnew and snew are column (2n+1)-vectors with the property that

% cnew = cos(linspace(a,b,2*n+1)) and snew = sin(linspace(a,b,2*n+1))

48 CHAPTER 1. POWER TOOLS OF THE TRADE

Your implementation should be vectorized and must make effective use of the trigonometric identities

cos(α + ∆) = cos(α) cos(∆) − sin(α) sin(∆)

sin(α + ∆) = sin(α) cos(∆) + cos(α) sin(∆)

in order to reduce the number of new cosine and sine evaluations. Hint: Let ∆ be the spacing associated with z.

P1.5.7 Complete the following function:

function BookCover(a,b,n)

% a and b are real with b<a. n is a positive integer.

% Let r1 = (a+b)/2 and r2 = (a-b)/2. In the same figure draws the ellipse

%

% (a*cos(t),b*sin(t)) 0<=t<=2*pi,

%

% the "big" circle

%

% (r1*cos(t),r1*sin(t)) 0<=t<=2*pi,

%

% and n "small" circles. The kth small circle should have radius r2 and center

% (r1*cos(2*pi*k/n),r1*sin(2*pi*k/n). A radius making angle -2*pi*k/n should be drawn

% inside the kth small circle.

Use BookCover to draw with correct proportions, the ellipse/circle configuration on the cover of the book.

1.6 Structure Arrays and Cell Arrays

As problems get more complicated it is very important to use appropriate data structures. The choice of a
good data structure can simplify one’s “algorithmic life.” To that end we briefly review two ways that more
advanced data structures can be used in Matlab: structure arrays and cell arrays.

A structure array has fields and values. Thus,

A = struct(’d’,16,’m’,23,’s’,47);

establishes A as a structure array with fields “d”, “m”, and “s”. Such a structure might be handy in a geodesy
application where latitudes and longitudes are measured in degrees, minutes, and seconds. The field values
are accessed with a “dot” notation. The value of A.d is 16, the value of A.m is 23, and the value of A.s is
47. The statement

r = pi*(A.d + A.m/60 + A.s/3600)/180;

assigns to r the radian equivalent of the angle represented by A. The triplet

NYC_Lat = struct(’d’,40,’m’,45,’s’,27);

NYC_Long = struct(’d’,75,’m’,12,’s’,32);

C1 = struct(’name’,’New York’,’lat’,NYC_Lat,’long’,NYC_Long);

establishes C1 as a structure array with three fields. The first field is a string and the last two are structure
arrays. Note that C1.long.d has value 75. One can also have an array of structure arrays:

NYC_Lat = struct(’d’,16,’m’,23,’s’,47);

NYC_Long = struct(’d’,74,’m’,2,’s’,32);

City(1) = struct(’name’,’New York’,’lat’,NYC_Lat,’long’,NYC_Long)

Ith_Lat = struct(’d’,42,’m’,25,’s’,16);

Ith_Long = struct(’d’,76,’m’,29,’s’,41);

City(2) = struct(’name’,’Ithaca’,’lat’,Ith_Lat,’long’,Ith_Long);

In this case, City(2).lat.d has value 42. We mention that a structure array can have an array field and
functions can have input and output parameters that are structure arrays.

A cell array is basically a matrix in which a given entry can be a matrix, a structure array, or a cell array.
If m and n are positive integers, then

1.6. STRUCTURE ARRAYS AND CELL ARRAYS 49

C = cell(m,n)

establishes C as an m-by-n cell array. Cell entries are referenced with curly brackets. Thus, the cell array C

in

C = cell(2,2);

C{1,1} = [1 2 ; 3 4];

C{1,2} = [5;6];

C{2,1} = [7 8];

C{2,2} = 9;

M = [C{1,1} C{1,2};C{2,1} C{2,2}]

is a way of representing the 3-by-3 matrix

M =




1 2 5
3 4 6
7 8 9



 .

1.6.1 Three-digit Arithmetic

Structures and strings are nicely reviewed by developing a three-digit, base-10 floating point arithmetic
simulation package. Let’s assume that the exponent range is [−9, 9] and that we use a 4-field structure to
represent each floating point number as described in the following specification:

function f = Represent(x)

% f = Represent(x)

% Yields a 3-digit floating point representation of f:

%

% f.mSignBit mantissa sign bit (0 if x>=0, 1 otherwise)

% f.m mantissa (= f.m(1) + f.m(2)/10 + f.m(3)/100)

% f.eSignBit the exponent sign bit (0 if exponent nonnegative, 1 otherwise)

% f.e the exponent (-9<=f.e<=9)

%

% If x is outside of [-9.99*10^9,9.99*10^9], f.m is set to inf.

% If x is in the range (-1.00*10^-9,1.00*10^-9) f is the representation of zero

% in which both sign bits are 0, e is zero, and m = [0 0 0].

Thus, f = Represent(-237000) is equivalent to

f = struct(’mSignBit’,1,’m’,[2 3 7],’eSignBit’,0,’e’,6)

Complementing Represent is the following function, which can take a three-digit representation and compute
its value:

function x = Convert(f)

% x = Convert(f)

% f is a is a representation of a 3-digit floating point number.

% x is the value of f.

% Overflow situations

if (f.m == inf) & (f.mSignBit==0)

x = inf;

return

end

if (f.m == inf) & (f.mSignBit==1)

x = -inf;

return

end

50 CHAPTER 1. POWER TOOLS OF THE TRADE

% Mantissa value

mValue = (100*f.m(1) + 10*f.m(2) + f.m(3))/100;

if f.mSignBit==1

mValue = -mValue;

end

% Exponent value

eValue = f.e;

if f.eSignBit==1

eValue = -eValue;

end

x = mValue * 10^eValue;

To simulate three-digit floating point arithmetic, we convert the operands to conventional form, do the
arithmetic, and then represent the result in 3-digit form. The following function implements this approach:

function z = Float(x,y,op)

% z = Float(x,y,op)

% x and y are representations of a 3-digit floating point number.

% op is one of the strings ’+’, ’-’, ’*’, or ’/’.

% z is the 3-digit floating point representation of x op y.

sx = num2str(convert(x));

sy = num2str(convert(y));

z = represent(eval([’(’ sx ’)’ op ’(’ sy ’)’]));

Strings are enclosed in quotes. The conversion of a number to a string is handled by num2str. Strings are
concatenated by assembling them in square brackets. The eval function takes a string for input and returns
the value produced when that string is executed.

To “pretty print” the value of a floating point representation, we have

function s = Pretty(f)

% s = Pretty(f)

% f is a representation of a 3-digit floating point number.

% s is a string so that disp(s) "pretty prints" the value of f.

As an illustration of how these functions can be used, the script file Euler generates the partial sums

sn = 1 +
1

2
+ · · ·+ 1

n
.

In exact arithmetic the sn tend toward ∞, but when we run

% Script File: Euler

% Sums the series 1 + 1/2 + 1/3 + .. in 3-digit floating point arithmetic.

% Terminates when the addition of the next term does not change

% the value of the running sum.

oldsum = Represent(0);

one = Represent(1);

sum = one;

k = 1;

while Convert(sum) ~= Convert(oldsum)

k = k+1;

kay = Represent(k);

term = Float(one,kay,’/’);

oldsum = sum;

sum = Float(sum,term,’+’);

end

clc

disp([’The sum for ’ num2str(k) ’ or more terms is ’ pretty(sum)])

1.6. STRUCTURE ARRAYS AND CELL ARRAYS 51

the loop terminates after 200 terms.

1.6.2 Padé Approximants

A very useful class of approximants for the exponential function ez are the Padé functions defined by

Rpq(z) =

(
p∑

k=0

(p + q − k)!p!

(p + q)!k!(p− k)!
zk

)/(
q∑

k=0

(p + q − k)!q!

(p + q)!k!(q − k)!
(−z)k

)
.

Assuming the availability of

function R = PadeCoeff(p,q)

% R = PadeCoeff(p,q)

% p and q are nonnegative integers and R is a representation of the

% (p,q)-Pade approximation N(x)/D(x) to exp(x):

%

% R.num is a row (p+1)-vector whose entries are the coefficients of the

% p-degree numerator polynomial N(x).

%

% R.den is a row (q+1)-vector whose entries are the coefficients of the

% q-degree denominator polynomial D(x).

%

% Thus,

% R.num(1) + R.num(2)x + R.num(3)x^2

% ------------------------------------

% R.den(1) + R.den(2)x

%

% is the (2,1) Pade approximation.

the following function returns a cell array whose entries specify a particular Padé approximation:

function P = PadeArray(m,n)

% P = PadeArray(m,n)

% m and n are nonnegative integers.

% P is an (m+1)-by-(n+1) cell array.

%

% P{i,j} represents the (i-1,j-1) Pade approximation N(x)/D(x) to exp(x).

P = cell(m+1,n+1);

for i=1:m+1

for j=1:n+1

P{i,j} = PadeCoeff(i-1,j-1);

end

end

Problems

P1.6.1 Write a function s = dot3(x,y) that returns the 3-digit representation of the inner product x’*y where x and y are
column vectors of the same length. The inner product should be computed using 3-digit arithmetic. (Make effective use of
represent, convert, and float.) The error can be computed via the command err = x’*y - convert(dot3(x,y)). Write a
script that plots a histogram of the error when dot3 is applied to 100 random x’*y problems of length 5. Use randn(5,1) to
generate the x and y vectors. Report the results in a histogram with 20 bins.

P1.6.2 Use PadeArray to generate representations of the Padé approximants Rpq for 0 ≤ p ≤ 3 and 0 ≤ q ≤ 3. Plot the relative
error of R11, R22 and R33 across the interval [-5 5]. Use semilogy for the plots.

P1.6.3 The Chebychev polynomials are defined by

Tk(x) =

8

<

:

1 k = 0
x k = 1
2xTk−1(x) − Tk−2(x) k ≥ 2

.

Write a function T = ChebyCoeff(n) that returns an n-by-1 cell array whose ith cell is a length-i array. The elements of the
array are the coefficients of Ti−1. Thus T{3} = [-1 0 2] since T2(x) = 2x2 − 1.

52 CHAPTER 1. POWER TOOLS OF THE TRADE

1.7 More Refined Graphics

Plots can be embellished so that they carry more information and have a more pleasing appearance. In this
section we show how to set font, incorporate subscripts and superscripts, and use mathematical and Greek
symbols in displayed strings. We also discuss the careful placement of text in a figure window and how to
modify what the axes “say”. Line thickness and color are also treated.

Because refined graphics is best learned through experimentation, our presentation is basically by exam-
ple. Formal syntactic definitions are avoided. The reader is encouraged to play with the scripts provided.

1.7.1 Fonts

A font has a name, a size, and a style. Figure 1.18 shows some of the possibilities associated with the
Times-Roman font. The script ShowFonts displays similar tableaus for the AvantGarde, Bookman, Courier,
Helvetica, Helvetica-Narrow, NewCenturySchlbk, Palatino, and Zapfchancery fonts. Here are some sample
text commands where non-default fonts are used:

text(x,y,’Matlab’,’FontName’,’Times-Roman’,’FontSize’,12)

text(x,y,’Matlab’,’FontName’,’Helvetica’,’FontSize’,12,’FontWeight’,’bold’)

text(x,y,’Matlab’,’FontName’,’ZapfChancery’,’FontSize’,12,’FontAngle’,’oblique’)

The fonts can also be set when using title, xlabel, and ylabel, e.g.,

title(’Important Title’,’FontName’,’Helvetica’,’FontSize’,18,’FontWeight’,’bold’)

1.7.2 Mathematical Typesetting

It is possible to specify subscripts, superscripts, Greek letters, and various mathematical symbols in the
strings that are passed to title, xlabel, ylabel, and text. For example,

title(’{\itf}_{1}({\itx}) = sin(2\pi{\itx}){\ite}^{-2{\it\alphax}}’)

creates a title of the form sin(2πx)e−2αx. conventions are followed. “Special characters” are specified with

Times−Roman

Plain Bold Oblique

Matlab Matlab Matlab

Matlab Matlab Matlab

Matlab Matlab Matlab

Matlab Matlab Matlab

Matlab Matlab Matlab

Matlab Matlab Matlab

Matlab Matlab Matlab

Figure 1.18 Fonts

a \ prefix and some of the possibilities are given in Figures 1.19 and 1.20. In this setting, curly brackets are
used to determine scope. The underscore and caret are used for subscripts and superscripts. It is customary
to italicize mathematical expressions, except that numbers and certain function names should remain in
plain font. To do this use \it.

1.7. MORE REFINED GRAPHICS 53

Math Symbols

←

→

↑

↓

⇐

⇒

⇔

∂

≠

≥

≈

≡

≅

±

∇

∠

∈

⊂

∪

∩

⊥

∞

∫

×

\leftarrow

\rightarrow

\uparrow

\downarrow

\Leftarrow

\Rightarrow

\Leftrightarrow

\partial

\neq

\geq

\approx

\equiv

\cong

\pm

\nabla

\angle

\in

\subset

\cup

\cap

\perp

\infty

\int

\times

Figure 1.19 Math symbols

Greek Symbols

α

β

γ

δ

ε

κ

λ

µ

ν

\alpha

\beta

\gamma

\delta

\epsilon

\kappa

\lambda

\mu

\nu

ω

φ

π

χ

ψ

ρ

σ

τ

υ

\omega

\phi

\pi

\chi

\psi

\rho

\sigma

\tau

\upsilon

Σ

Π

Λ

Ω

Γ

\Sigma

\Pi

\Lambda

\Omega

\Gamma

Figure 1.20 Greek symbols

54 CHAPTER 1. POWER TOOLS OF THE TRADE

1.7.3 Text Placement

The accurate placement of labels in a figure window is simplified by using HorizontalAlignment and
VerticalAlignment with suitable modifiers. With its vertices encoded in a pair of length-6 arrays x and y,

← P
1

↓
 P

2

P
3
 →

P
4
 →

↑P
5

← P
6

Figure 1.21 Text placements

the labeled hexagon in Figure 1.21 is produced with the following fragment:

HA = ’HorizontalAlignment’; VA = ’VerticalAlignment’;

text(x(1),y(1),’\leftarrow {\itP}_{1}’, HA,’left’)

text(x(2),y(2),’\downarrow’, HA,’center’, VA,’baseline’)

text(x(2),y(2),’{ \itP}_{2}’, HA,’left’, VA,’bottom’)

text(x(3),y(3),’{\itP}_{3} \rightarrow’, HA,’right’)

text(x(4),y(4),’{\itP}_{4} \rightarrow’, HA,’right’)

text(x(5),y(5),’\uparrow’, HA,’center’, VA,’top’)

text(x(5),y(5),’{\itP}_{5} ’, HA,’right’, VA,’top’)

text(x(6),y(6),’\leftarrow {\itP}_{6}’, HA,’left’)

1.7.4 Line Width and Axes

It is possible to modify the thickness of the lines that are drawn by plot. The fragment

h = plot(x,y);

set(h,’LineWidth’,3)

plots y versus x with the line width attribute set to 3. The effect of various line width settings is shown in
Figure 1.22. It is also possible to regulate the font used by xlabel, ylabel, and title and to control the
“tick mark” placement along these axes. See Figure 1.23 which is produced by the following script:

F = ’Times-Roman’; n = 12; t = linspace(0,2*pi); c = cos(t); s = sin(t);

plot(c,s), axis([-1.3 1.3,-1.3 1.3]), axis equal

title(’The Circle ({\itx-a})^{2} + ({\ity-b})^{2} = {\itr}^{2}’,...

’FontName’,F,’FontSize’,n)

xlabel(’x’,’FontName’,F,’FontSize’,n)

ylabel(’y’,’FontName’,F,’FontSize’,n)

set(gca,’XTick’,[-.5 0 .5])

set(gca,’YTick’,[-.5 0 .5])

grid on

1.7. MORE REFINED GRAPHICS 55

LineWidth

default

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Figure 1.22 Line width

−0.5 0 0.5

−0.5

0

0.5

The Circle (x−a)
2
 + (y−b)

2
 = r

2

x

y

Figure 1.23 Axis design

We mention that grid is a toggle and when it is on, the grid lines associated with the prescribed axis ticks
are displayed. All tick marks can be suppressed by using the empty matrix, e.g., set(gca,’XTick’,[]).

1.7.5 Legends

It is sometimes useful to have a legend in plots that display more than one function. Figure 1.24 is produced
by the following script:

t = linspace(0,2);

axis([0 2 -1.5 1.5])

y1 = sin(t*pi); y2 = cos(t*pi);

plot(t,y1,t,y2,[0 .5 1 1.5 2],[0 0 0 0 0],’o’)

set(gca,’XTick’,[]), set(gca,’YTick’,[0]), grid on

legend(’sin(\pi t)’,’cos(\pi t)’,’roots’,0)

The integer provided to legend is used to specify position: 0 = least conflict with data, 1 = upper right-hand
corner (default), 2 = upper left-hand corner, 3 = lower left-hand corner, 4 = lower right-hand corner, and
-1 = to the right of the plot.

56 CHAPTER 1. POWER TOOLS OF THE TRADE

0

sin(π t)
cos(π t)
roots

Figure 1.24 Legend placement

1.7.6 Color

Matlab comes with 8 predefined colors:

rgb [0 0 0] [0 0 1] [0 1 0] [0 1 1] [1 0 0] [1 0 1] [1 1 0] [1 1 1]
color white blue green cyan red magenta yellow black

mnemonic w b g c r m y k

The “rgb triple” is a 3-vector whose components specify the amount of red, green and blue. The rgb values
must be in between 0 and 1. (See Figure 1.25.) To specify that a particular line be drawn with a predefined
color, just include its mnemonic in the relevant line type string. Here are some examples:

plot(x,y,’g’)

plot(x,y,’*g’)

plot(x1,y1,’r’,x2,y2,’.g’,x3,y3,’k.-’)

The fill function can be used to draw filled polygons with a specified color. If x and y are length-n
vectors then

fill(x,y,’m’)

draws a magenta polygon whose vertices are (xi, yi), i = 1:n. “User-defined” colors can also be passed to
fill,

fill(x,y,[.3,.8,.4])

It is also possible draw several filled polygons at once:

fill(x1,y1,’g’,x2,y2,[.3,.8,.4])

1.7. MORE REFINED GRAPHICS 57

Built−In Colors A Gradient

cyan

magenta

yellow

red

green

blue

black

white

[0.40 , 1 , 1]

[0.60 , 1 , 1]

[0.70 , 1 , 1]

[0.80 , 1 , 1]

[0.85 , 1 , 1]

[0.90 , 1 , 1]

[0.95 , 1 , 1]

[1.00 , 1 , 1]

Figure 1.25 Color

See the script ShowColor for more details.

Problems

P1.7.1 Complete the following Matlab function so that it performs as specified:

function arch(a,b,theta1,theta2,r1,r2,ring_color)

%

% Adds an arch with center (a,b), inner radius r1, and outer radius r2 to the current figure.

% The arch is the set of all points of the form (a+r*cos(theta),b+r*sin(theta)) where

% r1 <= r <= r2 and theta1 <= theta <= theta2 where theta1 and theta2 in radians.

% The color of the displayed arch is prescribed by ring_color, a 3-vector encoding the rgb triple.

Write a function OlympicRings(r,n,ring colors) with the property that the script

close all

ring_colors = [0 0 1 ; 1 1 0 ; 1 1 1 ; 0 1 0 ; 1 0 0];

OlympicRings(1,5,ring_colors)

axis off equal

produces the following output (in black and white):

In a call to OlympicRings, r is the outer radius of each ring and n is the number of rings. Index the rings left to right from 0 to
n − 1. The parameter ring colors is an n-by-3 matrix whose k + 1st row specifies the color of the kth ring. The inner radius
of each ring is .85r. The center (ak, bk) of the kth ring is given by (1.15rk,0) if k is even and by (1.15rk,−r) if k is odd.

Notice that the rings are interlocking. Thus, to get the right “over-and-under” appearance you cannot simply superimpose
the drawing of the 5 rings. You’ll have to split up the drawing of each ring into sections and the small little cross lines you see
in the above figure are a hint.

58 CHAPTER 1. POWER TOOLS OF THE TRADE

M-Files and References

Script Files

SineTable Prints a short table of sine evaluations.
SinePlot Displays a sequence of sin(x) plots.
ExpPlot Plots exp(x) and an approximation to exp(x).
TangentPlot Plots tan(x).
SineAndCosPlot Superimposes plots of sin(x) and cos(x).
Polygons Displays nine regular polygons, one per window.
SumOfSines Displays the sum of four sine functions.
SumOfSines2 Displays a pair of sum-of-sine functions.
UpDown Sample core exploratory environment.
RunUpDown Framework for running UpDown.
Histograms Displays the distribution of rand and randn.
Clouds Displays 2-dimensional rand and randn.
Dice Histogram of 1000 dice rolls.
Darts Monte Carlo computation of pi.
Smooth Polygon smoothing.
Stirling Relative and absolute error in Stirling formula.
ExpTaylor Plots relative error in Taylor approximation to exp(x).
Zoom Roundoff in the expansion of (x-1)b6.
FpFacts Examines precision, overflow, and underflow.
TestMyExp Examines MyExp1, MyExp2, MyExp3, and MyExp4.
Euler Three-digit arithmetic sum of 1 + 1/2 +...+ 1/n.
ShowPadeArray Tests the function PadeArray.
ShowFonts Illustrates how to use fonts.
ShowSymbols Shows how to generate math symbols.
ShowGreek Shows how to generate Greek letters.
ShowText Shows how to align with text.
ShowLineWidth Shows how vary line width in a plot.
ShowAxes Shows how to set tick marks on axes.
ShowLegend Shows how to add a legend to a plot.
ShowColor Shows how to use built-in colors and user-defined colors.

Function Files

MyExpF For-loop Taylor approximation to exp(x).
MyExp1 Vectorized version of MyExpF.
MyExp2 Better vectorized version of MyExpF.
MyExpW While-loop Taylor approximation to exp(x).
MyExp3 Vectorized version of MyExpW.
MyExp4 Better vectorized version of MyExpW.
Derivative Numerical differentiation.
Represent Sets up 3-digit arithmetic representation.
Convert Converts 3-digit representation to float.
Float Simulates 3-digit arithmetic.
Pretty Pretty prints a 3-digit representation.
PadeArray Builds a cell array of Pade coefficients.

