
Chapter 3

Piecewise Polynomial Interpolation

§3.1 Piecewise Linear Interpolation

§3.2 Piecewise Cubic Hermite Interpolation

§3.3 Cubic Splines

An important lesson from Chapter 2 is that high-degree polynomial interpolants at equally-spaced points
should be avoided. This can pose a problem if we are to produce an accurate interpolant across a wide
interval [α, β]. One way around this difficulty is to partition [α, β],

α = x1 < x2 < · · · < xn = β

and then interpolate the given function on each subinterval [xi, xi+1] with a polynomial of low degree. This
is the piecewise polynomial interpolation idea. The xi are called breakpoints.

We begin with piecewise linear interpolation working with both fixed and adaptively determined break-
points. The latter requires a classical divide-and-conquer approach that we shall use again in later chapters.

Piecewise linear functions do not have a continuous first derivative, and this creates problems in certain
applications. Piecewise cubic Hermite interpolants address this issue. In this setting, the value of the
interpolant and its derivative is specified at each breakpoint. The local cubics join in a way that forces first
derivative continuity.

Second derivative continuity can be achieved by carefully choosing the first derivative values at the
breakpoints. This leads to the topic of splines, a very important idea in the area of approximation and
interpolation. It turns out that cubic splines produce the smoothest solution to the interpolation problem.

3.1 Piecewise Linear Interpolation

Assume that x(1:n) and y(1:n) are given where α = x1 < · · · < xn = β and yi = f(xi), i = 1:n. If you
connect the dots (x1, y1), . . . , (xn, yn) with straight lines, as in Figure 3.1, then the graph of a piecewise

linear function is displayed. We already have considerable experience with such functions, for this is what
plot(x,y) displays.

3.1.1 Set-Up

The piecewise linear interpolant is built upon the local linear interpolants

Li(z) = ai + bi(z − xi),

where for i = 1:n − 1 the coefficients are defined by

ai = yi and bi =
yi+1 − yi

xi+1 − xi

.

1

2 CHAPTER 3. PIECEWISE POLYNOMIAL INTERPOLATION

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.1 A piecewise linear function

Note that Li(z) is just the linear interpolant of f at the points x = xi and x = xi+1. We then define

L(z) =

L1(z) if x1 ≤ z < x2

L2(z) if x2 ≤ z < x3

...
...

Ln−1(z) if xn−1 ≤ z ≤ xn

.

The act of setting up L is the act of solving each of the local linear interpolation problems. The n−1 divided
differences b1, . . . , bn−1 can obviously be computed by a loop,

for i=1:n-1

b(i) = (y(i+1)-y(i))/(x(i+1)-x(i));

end

or by using pointwise division,

b = (y(2:n)-y(1:n-1)) ./ (x(2:n)-x(1:n-1))

or by using the built-in function diff:

b = diff(y) ./ diff(x)

Packaging these operations we obtain

function [a,b] = pwL(x,y)

% Generates the piecewise linear interpolant of the data specified by the

% column n-vectors x and y. It is assumed that x(1) < x(2) < ... < x(n).

%

% a and b are column (n-1)-vectors with the property that for i=1:n-1, the

% line L(z) = a(i) + b(i)z passes though the points (x(i),y(i)) and (x(i+1),y(i+1)).

n = length(x);

a = y(1:n-1);

b = diff(y) ./ diff(x);

Thus,

z = linspace(0,1,9);

[a,b] = pwL(z,sin(2*pi*z));

sets up a piecewise linear interpolant of sin(2πz) on a uniform, nine-point partition of [0, 1].

3.1. PIECEWISE LINEAR INTERPOLATION 3

3.1.2 Evaluation

To evaluate L at a point z ∈ [α, β], it is necessary to determine the subinterval that contains z. In our
problem x has the property that x1 < · · · < xn and so sum(x<=z) is the number of xi that are to the left of
z or equal to z. It follows that

if z == x(n);

i = n-1;

else

i = sum(x<=z);

end

determines the index i so that xi ≤ z ≤ xi+1. Notice the special handling of the case when z equals xn.
(Why?) A total of n comparisons are made because every component in x is compared to z.

A better approach is to exploit the monotonicity of the xi and to use binary search. Here is the main
idea. Suppose we have indices Left and Right so that xLeft ≤ z ≤ xRight. If mid = floor((Left + Right)/2),
then by checking z’s relation to xmid we can halve the search space by redefining Left or Right accordingly:

mid = floor((Left+Right)/2);

if z < x(mid)

Right = mid;

else

Left = mid;

end

Repeated application of this process eventually identifies the subinterval that houses z:

if z == x(n)

i = n-1;

else

Left = 1; Right = n;

while Right > Left+1

% z is in [x(Left),x(Right)].

mid = floor((Left+Right)/2);

if z < x(mid)

Right = mid;

else

Left = mid;

end

end

i = Left;

end

Upon completion, i contains the index of the subinterval that contains z. If n = 10 and z ∈ [x6, x7], then
here is the succession of Left and Right values produced by the binary search method:

Left Right mid

1 10 5

5 10 7

5 7 6

6 7 -

Roughly log2(n) comparisons are required to locate the appropriate subinterval. If n is large, then this is
much more efficient than the sum(x<z) method, which requires n comparisons.

For “random” z, we can do no better than binary search. However, if L is to be evaluated at an ordered
succession of points, then we can improve the subinterval location process. For example, suppose we want to
plot L on [α, β]. This requires the assembly of the values L(z1), . . . , L(zm) in a vector where m is a typically
large integer and α ≤ z1 ≤ · · · ≤ zm ≤ β. Rather than locate each zi via binary search, it is more efficient to

4 CHAPTER 3. PIECEWISE POLYNOMIAL INTERPOLATION

exploit the systematic “migration” of the evaluation point as it moves left to right across the subintervals.
Chances are that if i is the subinterval index associated with the current z-value, then i will be the correct
index for the next z-value. This “guess” at the correct subinterval can be checked before we launch the
binary search process.

function i = locate(x,z,g)

% Locates z in a partition x.

% x is column n-vector with x(1) < x(2) <...<x(n) and

% z is a scalar with x(1) <= z <= x(n).

% g (1<=g<=n-1) is an optional input parameter

% i is an integer such that x(i) <= z <= x(i+1). Before the general

% search for i begins, the value i=g is tried.

if nargin==3

% Try the initial guess.

if (x(g)<=z) & (z<=x(g+1))

i = g;

return

end

end

n = length(x);

if z==x(n)

i = n-1;

else

% Binary Search

Left = 1; Right = n;

while Right > Left+1

% x(Left) <= z <= x(Right)

mid = floor((Left+Right)/2);

if z < x(mid)

Right = mid;

else

Left = mid;

end

end

i = Left;

end

This function makes use of the return command. This terminates the execution of the function. It is
possible to restructure locate to avoid the return, but the resulting logic would be cumbersome. As an
application of locate, here is a function that produces a vector of L-values:

function LVals = pwLeval(a,b,x,zVals)

% Evaluates the piecewise linear polynomial defined by the column (n-1)-vectors

% a and b and the column n-vector x. It is assumed that x(1) < ... < x(n).

% zVals is a column m-vector with each component in [x(1),x(n)].

% LVals is a column m-vector with the property that LVals(j) = L(zVals(j))

% for j=1:m where L(z)= a(i) + b(i)(z-x(i)) for x(i)<=z<=x(i+1).

m = length(zVals); LVals = zeros(m,1); g = 1;

for j=1:m

i = locate(x,zVals(j),g);

LVals(j) = a(i) + b(i)*(zVals(j)-x(i));

g = i;

end

3.1. PIECEWISE LINEAR INTERPOLATION 5

0 0.5 1 1.5 2 2.5 3
−20

0

20

40

60

80

100
Interpolation of humps(x) with pwL, n = 10

Figure 3.2 Piecewise linear approximation

The following script illustrates the use of this function, producing a sequence of piecewise linear approxima-
tions to the built-in function

humps(x) =
1

(x − .3)2 + .01
+

1

(x − .9)2 + .04
− 6.

% Script File: ShowPWL1

% Convergence of the piecewise linear interpolant to

% humps(x) on [0,3]

close all

z = linspace(0,3,200)’;

fvals = humps(z);

for n = [5 10 25 50]

figure

x = linspace(0,3,n)’;

y = humps(x);

[a,b] = pwL(x,y);

Lvals = pwLEval(a,b,x,z);

plot(z,Lvals,z,fvals,’--’,x,y,’o’);

title(sprintf(’Interpolation of humps(x) with pwL, n = %2.0f’,n))

end

(See Figure 3.2 for the 10-point case.) Observe that more interpolation points are required in regions where
humps is particularly nonlinear.

3.1.3 A Priori Determination of the Breakpoints

Let us consider how many breakpoints we need to obtain a satisfactory piecewise linear interpolant. If
z ∈ [xi, xi+1], then from Theorem 2,

f(z) = L(z) +
f(2)(η)

2
(z − xi)(z − xi+1),

where η ∈ [xi, xi+1]. If the second derivative of f on [α, β] is bounded by M2 and if h̄ is the length of the
longest subinterval in the partition, then it is not hard to show that

|f(z) − L(z)| ≤
M2h̄

2

8

6 CHAPTER 3. PIECEWISE POLYNOMIAL INTERPOLATION

for all z ∈ [α, β].
A typical situation where this error bound can be put to good use is in the design of the underlying

partition upon which L is based. Assume that L(x) is based on the uniform partition

α = x1 < x2 < · · · < xn = β,

where

xi = α +
i − 1

n − 1
(β − α).

To ensure that the error between L and f is less than or equal to a given positive tolerance δ, we insist that

|f(z) − L(z)| ≤
M2h̄

2

8
=

M2

8

(
β − α

n − 1

)2

≤ δ.

From this we conclude that n must satisfy

n ≥ 1 + (β − α)
√

M2/8δ.

For the sake of efficiency, it makes sense to let n be the smallest integer that satisfies this inequality:

function [x,y] = pwLstatic(f,M2,alpha,beta,delta)

% Generates interpolation points for a piecewise linear approximation of

% prescribed accuracy.

%

% f is a handle that references a function f(x).

% Assume that f can take vector arguments.

% M2 is an upper bound for|f"(x)| on [alpha,beta].

% alpha and beta are scalars with alpha<beta.

% delta is a positive scalar.

%

% x and y column n-vectors with the property that y(i) = f(x(i)), i=1:n.

% The piecewise linear interpolant L(x) of this data satisfies

% |L(z) - f(z)| <= delta for x(1) <= z <= x(n).

n = max(2,ceil(1+(beta-alpha)*sqrt(M2/(8*delta))));

x = linspace(alpha,beta,n)’;

y = f(x);

The partition produced by pwLstatic does not take into account the sampled values of f . As a result, the
uniform partition produced may be much too refined in regions where f ′′ is much smaller than the bound
M2.

3.1.4 Adaptive Piecewise Linear Interpolation

Suppose f is very nonlinear over just a small portion of [α, β] and very smooth elsewhere. (See Figure 3.2.)
This means that if we use pwLstatic to generate the partition, then we are compelled to use a large M2.
Lots of subintervals and (perhaps costly) f-evaluations will be required. Over regions where f is smooth,
the partition will be overly refined.

To address this problem, we develop a recursive partitioning algorithm that “discovers” where f is “extra
nonlinear” and that clusters the breakpoints accordingly. A definition simplifies the discussion. We say that
the subinterval [xL, xR] is acceptable if

∣∣∣∣f
(

xL + xR

2

)
−

f(xL) + f(xR)

2

∣∣∣∣ ≤ δ

or if
xR− xL ≤ hmin,

3.1. PIECEWISE LINEAR INTERPOLATION 7

where δ > 0 and hmin > 0 are (typically small) refinement parameters. The first condition measures the
discrepancy between the line that connects (xL, f(xL)) and (xR, f(xR)) and the function f(x) at the interval
midpoint m = (xL+xR)/2. The second condition says that sufficiently short subintervals are also acceptable
where “sufficiently short” means less than hmin in length.

One more definition is required before we can describe the complete partitioning process. A partition
x1 < · · · < xn is acceptable if each subinterval is acceptable. Note that if

xL = x
(L)
1 < · · · < x(L)

n = m

is an acceptable partition of [xL, m] and if

m = x
(R)
1 < · · · < x(R)

n = xR

is an acceptable partition of [m, xR], then

xL = x
(L)
1 < · · · < x(L)

n < x
(R)
2 < · · · < x(R)

n = xR

is an acceptable partition of [xL, xR]. This sets the stage for a recursive determination of an acceptable
partition:

function [x,y] = pwLadapt(f,xL,fL,xR,fR,delta,hmin)

% Adaptively determines interpolation points for a piecewise linear

% approximation of a specified function.

%

% f is a handle that references a function of the form y = f(u).

% xL and xR are real scalars and fL = f(xL) and fR = f(xR).

% delta and hmin are positive real scalars that determine accuracy.

%

% x and y are column n-vectors with the property that

% xL = x(1) < ... < x(n) = xR

% and y(i) = f(x(i)), i=1:n. Each subinterval [x(i),x(i+1)] is

% either <= hmin in length or has the property that at its midpoint m,

% |f(m) - L(m)| <= delta where L(x) is the line that connects (x(i),y(i))

% and (x(i+1),y(i+1)).

if (xR-xL) <= hmin

% Subinterval is acceptable

x = [xL;xR];

y = [fL;fR];

else

mid = (xL+xR)/2;

fmid = f(mid);

if (abs(((fL+fR)/2) - fmid) <= delta)

% Subinterval accepted.

x = [xL;xR];

y = [fL;fR];

else

% Produce left and right partitions, then synthesize.

[xLeft,yLeft] = pwLAdapt(f,xL,fL,mid,fmid,delta,hmin);

[xRight,yRight] = pwLAdapt(f,mid,fmid,xR,fR,delta,hmin);

x = [xLeft;xRight(2:length(xRight))];

y = [yLeft;yRight(2:length(yRight))];

end

end

8 CHAPTER 3. PIECEWISE POLYNOMIAL INTERPOLATION

0 0.5 1 1.5 2 2.5 3
−20

0

20

40

60

80

100
delta = 0.0500 Static n= 668

0 0.5 1 1.5 2 2.5 3
−20

0

20

40

60

80

100
delta = 0.0500 Adapt n= 130

Figure 3.3 Static versus adaptive approximation

The idea behind the function is to check and see if the input interval is acceptable. If it is not, then acceptable
partitions are obtained for the left and right half intervals. These are then “glued” together to obtain the
final, acceptable partition.

The distinction between static and adaptive piecewise linear interpolation is revealed by running the
following script:

% Script File: ShowpwL2

% Compares pwLstatic and pwLsdapt on [0,3] using the function

%

% humps(x) = 1/((x-.3)^2 + .01) + 1/((x-.9)^2+.04)

%

close all

% Second derivative estimate based on divided differences

z = linspace(0,1,101);

humpvals = humps(z);

M2 = max(abs(diff(humpvals,2)/(.01)^2));

for delta = [1 .5 .1 .05 .01]

figure

[x,y] = pwLstatic(@humps,M2,0,3,delta);

subplot(1,2,1)

plot(x,y,’.’);

title(sprintf(’delta = %8.4f Static n= %2.0f’,delta,length(x)))

[x,y] = pwLadapt(@humps,0,humps(0),3,humps(3),delta,.001);

subplot(1,2,2)

plot(x,y,’.’);

title(sprintf(’delta = %8.4f Adapt n= %2.0f’,delta,length(x)))

set(gcf,’position’,[200 200 1200 500])

end

(See Figure 3.3.) The humps function is very nonlinear in the vicinity of x = .3. A second derivative bound
is approximated with differences and used in pwLstatic. In the example approximately four times as many
function evaluations are required when the static approach is taken.

3.2. PIECEWISE CUBIC HERMITE INTERPOLATION 9

Problems

P3.1.1 Generalize locate so that it tries i = g + 1 and i = g − 1 before resorting to binary search. (Take care to guard against
subscript out-of-range.) Implement pwLeval with this modified subinterval locator and document the speed-up.

P3.1.2 Write a function i = LocateUniform(alpha,beta,n,z) that assumes [α,β] is partitioned into n−1 subintervals of equal
length and returns the index of the interval that houses z.

P3.1.3 What happens if pwLadapt is applied to sin(x) with [α,β] = [0,2π]?

P3.1.4 Describe what would happen if pwLadapt is called with delta = 0.

P3.1.5 Describe why the number of recursive calls in pwLadapt is bounded if |f ′′(x)| is bounded on [α,β].

P3.1.6 Modify pwLadapt so that a subinterval is accepted if |f(p) − λ(p)| and |f(q) − λ(q)| are less than or equal to delta,
where p = (2xL+xR)/3, q = (xL+2xR)/3, and λ(x) is the line that connects (xL,fL) and (xR,fR). Avoid redundant function
evaluations.

P3.1.7 If pwLadapt is applied to the function f(x) =
√

x on the interval [0,1], then a partition x(1:n) is produced that satisfies

x2 − x1 ≤ x3 − x2 ≤ · · · ≤ xn − xn−1.

Why?

P3.1.8 Generalize pwLadapt(f,xL,fL,xR,fR,delta,hmin) to

function [x,y,eTaken] = pwLadapt(f,xL,fL,xR,fR,delta,hmin,eMax)

so that no more than eMax function evaluations are taken. The value of eTaken should be the actual number of function
evaluations spent. Let n = length(x). In a “successful” call, x(n) should equal xR, meaning that a satisfactory piecewise
linear approximation was found extending across the entire interval [xL,xR]. If this is not the case, then the evaluation limit
was encountered before xR was reached and x(n) will be less than xR. In this situation vectors returned define a satisfactory
piecewise linear approximation across [x(1),x(n)].

P3.1.9 Notice that in pwLadapt the vector y does not include all the computed function evaluations. So that these evaluations
are not lost, generalize pwLadapt to

[x,y,xUnused,yUnused] = pwLadaptGen(f,xL,fL,xR,fR,delta,hmin,...)

where (a) the x and y vectors are identical to what pwLadapt computes and (b) xUnused and yUnused are column vectors that
contain the x-values and function values that were computed, but not included in x and y. Thus, the xUnused and yUnused

vectors should have the property that yUnused(i) = feval(fname,xUnused(i)), i = 1:length(xUnused). You are allowed to
extend the calling sequence if convenient. In that case, indicate the values that should be passed through these new parameters
at the top-level call. xUnused and yUnused should be assigned the empty vector [] if xR-xL<hmin. The order of the values in
xUnused is not important.

P3.1.10 Vectorize locate and pwLeval.

3.2 Piecewise Cubic Hermite Interpolation

Now let’s graduate to piecewise cubic functions. With the increase in degree we can obtain a smoother fit
to a given set of n points. The idea is to interpolate both f and its derivative with a cubic on each of the
subintervals.

3.2.1 Cubic Hermite Interpolation

So far we have only considered the interpolation of function values at distinct points. In the Hermite

interpolation problem, both the function and its derivative are interpolated. To illustrate the idea, we
consider the interpolation of the function f(z) = cos(z) at the points x1 = 0, x2 = δ, x3 = 3π/2 − δ, and
x4 = 3π/2 by a cubic p3(z). For small δ we notice that p3(z) seems to interpolate both f and f ′ at z = 0 and
z = 3π/2. The interpolation shown in Figure 3.4 on the next page was obtained by running the following
script:

10 CHAPTER 3. PIECEWISE POLYNOMIAL INTERPOLATION

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1

1.5
Interpolation of cos(x). Separation = 0.300

Figure 3.4 A “nearly” Hermite interpolation

% Script File: ShowHermite

% Plots a succession of cubic interpolants to cos(x).

% x(2) converges to x(1) = 0 and x(3) converges to x(4) = 3pi/2.

close all

z = linspace(-pi/2,2*pi,100);

CosValues = cos(z);

for d = [1 .5 .3 .1 .05 .001]

figure

xvals = [0;d;(3*pi/2)-d;3*pi/2];

yvals = cos(xvals);

c = InterpN(xvals,yvals);

CubicValues = HornerN(c,xvals,z);

plot(z,CosValues,z,CubicValues,’--’,xvals,yvals,’*’)

axis([-.5 5 -1.5 1.5])

title(sprintf(’Interpolation of cos(x). Separation = %5.3f’,d))

end

As the points coalesce, the cubic converges to a cubic interpolant of the cosine and its derivative at the
points 0 and 3π/2. This is called the Hermite cubic interpolant.

In the general cubic Hermite interpolation problem, we are given function values yL and yR and derivative
values sL and sR and seek coefficients a, b, c, and d so that if

q(z) = a + b(z − xL) + c(z − xL)2 + d(z − xL)2(z − xR),

then
q(xL) = yL q(xR) = yR

q′(xL) = sL q′(xR) = sR.

Each of these equations “says” something about the unknown coefficients. Noting that

q′(z) = b + 2c(z − xL) + d(2(z − xL)(z − xR) + (z − xL)2),

we see that
a = yL a + b∆x + c(∆x)2 = yR

b = sL b + 2c∆x + d(∆x)2 = sR,

3.2. PIECEWISE CUBIC HERMITE INTERPOLATION 11

where ∆x = xR − xL. Expressing this in matrix-vector we obtain

1 0 0 0
0 1 0 0
1 ∆x (∆x)2 0
0 1 2∆x (∆x)2

a
b
c
d

 =

yL

sL

yR

sR

 .

The solution to this triangular system is straightforward:

a = yL

b = sL

c =
y′L − sL

∆x

d =
sR + sL − 2y′L

(∆x)2

where

y′L =
yR − yL

∆x
=

yR − yL

xR − xL

.

Thus, we obtain

function [a,b,c,d] = HCubic(xL,yL,sL,xR,yR,sR)

% Cubic Hermite interpolation

% (xL,yL,sL) and (xR,yR,sR) are x-y-slope triplets with xL and xR distinct.

% a,b,c,d are real numbers with the property that if

% p(z) = a + b(z-xL) + c(z-xL)^2 + d(z-xL)^2(z-xR)

% then p(xL)=yL, p’(xL)=sL, p(xR)=yR, p’(xR)=sR.

a = yL; b = sL; delx = xR - xL;

yp = (yR - yL)/delx;

c = (yp - sL)/delx;

d = (sL - 2*yp + sR)/(delx*delx);

An error expression for the cubic Hermite interpolant can be derived from Theorem 3.

Theorem 3 Suppose f(z) and its first four derivatives are continuous on [xL, xR] and that the constant M4

satisfies

|f(4)(z)| ≤ M4

for all z ∈ [L, R]. If q is the cubic Hermite interpolant of f at xL and xR, then

|f(z) − q(z)| ≤
M4

384
h4,

where h = xR − xL.

Proof If qδ(z) is the cubic interpolant of f at xL, xL + δ, xR − δ, and xR, then from Theorem 2 we have

|f(z) − qδ(z)| ≤
M4

24
|(z − xL)(z − xL − δ)(z − xR + δ)(z − xR)|

for all z ∈ [xL, xR]. We assume without proof1 that

lim
δ→0

qδ(z) = q(z)

and so

|f(z) − q(z)| ≤
M4

24
|(z − xL)(z − xL)(z − xR)(z − xR)|.

1But check out ShowHermite

12 CHAPTER 3. PIECEWISE POLYNOMIAL INTERPOLATION

The maximum value of the quartic polynomial on the right occurs at the midpoint z = xL + h/2 and so for
all z in the interval [xL, xR] we have

|f(z) − q(z)| ≤
M4

24

(
h

2

)4

=
M4

384
h4. �

Theorem 3 says that if the interval length is divided by 10, then the error bound is reduced by a factor of
104.

3.2.2 Representation and Set-Up

We now show how to glue a sequence of Hermite cubic interpolants together so that the resulting piecewise
cubic polynomial C(z) interpolates the data (x1, y1), . . . , (xn, yn), with the prescribed slopes s1, . . . , sn. To
that end we assume x1 < x2 < · · · < xn and define the ith local cubic by

qi(z) = ai + bi(z − xi) + ci(z − xi)
2 + di(z − xi)

2(z − xi+1).

Define the piecewise cubic polynomial by

C(z) =

q1(z) if x1 ≤ z < x2

q2(z) if x2 ≤ z < x3

...
...

qn−1(z) if xn−1 ≤ z ≤ xn

.

Our goal is to determine a(1:n − 1), b(1:n− 1), c(1:n− 1), and d(1:n− 1) so that

C(xi) = yi

C ′(xi) = si

, i = 1:n

This will be the case if we simply solve the following n − 1 cubic Hermite problems:

qi(xi) = yi

q′i(xi) = si

qi(xi+1) = yi+1

q′i(xi+1) = si+1

The results of §3.2.1 apply:

ai = yi, bi = si, ci =
y′i − si

∆xi

, di =
si+1 + si − 2y′i

(∆xi)2
,

where ∆xi = xi+1 − xi and

y′i =
yi+1 − yi

∆xi

=
yi+1 − yi

xi+1 − xi

.

We could use HCubic to resolve the coefficients:

for i=1:n-1

[a(i), b(i), c(i), d(i)] = HCubic(x(i),y(i),s(i),x(i+1),y(i+1),s(i+1))

end

But a better solution is to vectorize the computation, and this gives

3.2. PIECEWISE CUBIC HERMITE INTERPOLATION 13

function [a,b,c,d] = pwC(x,y,s)

% Piecewise cubic Hermite interpolation.

%

% x,y,s column n-vectors with x(1) < ... < x(n)

%

% a,b,c,d column (n-1)-vectors that define a continuous, piecewise

% cubic polynomial q(z) with the property that for i = 1:n,

%

% q(x(i)) = y(i) and q’(x(i)) = s(i).

%

% On the interval [x(i),x(i+1)],

%

% q(z) = a(i) + b(i)(z-x(i)) + c(i)(z-x(i))^2 + d(i)(z-x(i))^2(z-x(i+1)).

n = length(x);

a = y(1:n-1);

b = s(1:n-1);

Dx = diff(x);

Dy = diff(y);

yp = Dy ./ Dx;

c = (yp - s(1:n-1)) ./ Dx;

d = (s(2:n) + s(1:n-1) - 2*yp) ./ (Dx.* Dx);

If M4 bounds |f(4)(x)| on the interval [x1, xn], then Theorem 3 implies that

|f(z) − C(z)| ≤
M4

384
h̄4

for all z ∈ [x1, xn], where h̄ is the length of the longest subinterval (i.e., maxi|xi+1 − xi|.)

3.2.3 Evaluation

The evaluation of C(z) has two parts. As with any piecewise polynomial that must be evaluated, the
position of z in the partition must be ascertained. Once that is accomplished, the relevant local cubic must
be evaluated. Here is a function that can be used to evaluate C at a vector of z values:

function Cvals = pwCeval(a,b,c,d,x,zVals)

% Evaluates the pwC defined by the column (n-1)-vectors a,b,c, and

% d and the column n-vector x. It is assumed that x(1) < ... < x(n).

% zVals is a column m-vector with each component in [x(1),x(n)].

%

% CVals is a column m-vector with the property that CVals(j) = C(zVals(j))

% for j=1:m where on the interval [x(i),x(i+1)]

%

% C(z)= a(i) + b(i)(z-x(i)) + c(i)(z-x(i))^2 + d(i)(z-x(i))^2(z-x(i+1))

m = length(zVals);

Cvals = zeros(m,1);

g=1;

for j=1:m

i = Locate(x,zVals(j),g);

Cvals(j) = d(i)*(zVals(j)-x(i+1)) + c(i);

Cvals(j) = Cvals(j)*(zVals(j)-x(i)) + b(i);

Cvals(j) = Cvals(j)*(zVals(j)-x(i)) + a(i);

g = i;

end

14 CHAPTER 3. PIECEWISE POLYNOMIAL INTERPOLATION

Analogous to pwLeval, we use Locate to determine the subinterval that houses the jth evaluation point zj.
The cubic version of HornerN is then used to evaluate the appropriate local cubic. The following script file
illustrates the use of pwC and pwCeval:

% Script File: ShowpwCH

% Convergence of the piecewise cubic hermite interpolant to

% exp(-2x)sin(10*pi*x) on [0,1].)

close all

z = linspace(0,1,200)’;

fvals = exp(-2*z).*sin(10*pi*z);

for n = [4 8 16 24]

x = linspace(0,1,n)’;

y = exp(-2*x).*sin(10*pi*x);

s = 10*pi*exp(-2*x).*cos(10*pi*x)-2*y;

[a,b,c,d] = pwC(x,y,s);

Cvals = pwCeval(a,b,c,d,x,z);

figure

plot(z,fvals,z,Cvals,’--’,x,y,’*’);

title(sprintf(’Interpolation of exp(-2x)sin(10pi*x) with pwCH, n = %2.0f’,n))

end

legend(’e^{-2z}sin(10\pi z)’,’The pwC interpolant’)

Sample output is displayed in Figure 3.5.

0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Interpolation of exp(−2x)sin(10pi*x) with pwCH, n = 8

e
−2z

sin(10π z)

The pwC interpolant

Figure 3.5 Piecewise cubic Hermite interpolant of e−2x sin(10πx), n = 8

Problems

P3.2.1 Write a function [a,b,c,d] = pwCstatic(f,fp,M4,alpha,beta,delta) analogous to pwLstatic. It should produce a
piecewise cubic Hermite approximation with uniform spacing. It should use the error result of Theorem 3 and the 4th derivative
bound M4 to determine the partition. The parameters f and fp should be handles that reference the function and its derivative
respectively.

P3.2.2 Write a recursive function

function [x,y,s] = pwCAdapt(f,fp,L,fL,DfL,R,fR,DfR,delta,hmin)

analogous to pwLadapt. Use the same interval acceptance tests as in pwLadapt. The parameters f and fp should be handles
that reference the function and its derivative respectively. Use both pwLAdapt and pwCAdapt to produce approximations to
f(x) =

√
x on the interval [.001,9]. Fix hmin = .001. Print a table that shows the number of partition points computed by

pwLadapt and pwCadapt for delta = .1, .01, .001, .0001, and .00001.

P3.2.3 Complete the following function:

3.2. PIECEWISE CUBIC HERMITE INTERPOLATION 15

function [R,fR] = stretch(L,fL,tol);

% L,fL are scalars that satisfy fL = exp(-L) and tol is a positive real.

% R,fR are scalars that satisfy fR = exp(-R) with the property that if q(z) is the cubic

% hermite interpolant of exp(-z) at z=L and z=R, then |q(z) - exp(-z)| <= tol on [L,R].

Make effective use of the error bound in Theorem 3 when choosing R. Hint: How big can you make R and still guarantee the
required accuracy? Making effective use of stretch complete the following:

function [x,y] = pwCexp(a,b,tol)

% a,b are scalars that satisfy a < b and tol is a positive real.

% x,y are column n-vectors where a = x(1) < x(2) < ... < x(n) = b

% and y(i) = exp(-x(i)), i=1:n. The partition is chosen so that if C(z)

% is the piecewise cubic hermite interpolant of exp(-z) on this partition,

% then |C(z) - exp(-z)| <= tol for all z in [a,b]

P3.2.4 We want to interpolate a function f on [a, b] with error less than tol. When is it cheaper to set up a piecewise linear
interpolant L(z) with a uniform partition than a piecewise cubic hermite interpolant C(z) with a uniform partition? Your
answer should make use of the following facts and assumptions:

• If ` is the linear interpolant of f on an interval [α,β], then on that interval the error is no bigger than M2(β − α)2/8,
where M2 is an upper bound for |f (2)(z)|. Assume that M2 is known.

• If p is the cubic hermite interpolant of f on an interval [α,β], then on that interval the error is no bigger than M4(β −
α)4/384, where M4 is an upper bound for |f (4)(z)|. Assume that M4 is known.

• A vectorized Matlab implementation of the function f is available and it requires σn seconds to execute when applied
to an n-vector. Assume that σ is known.

• A vectorized Matlab implementation of the function f ′ is available and it requires τn seconds to execute when applied
to an n-vector. Assume that τ is known.

P3.2.5 Consider the quartic polynomial q(t) having the form

q(t) = a1 + a2t + a3t2 + a4t2(t − 1) + a5t2(t − 1)2.

Given scalars v0, s0, v1, s1, vτ , and τ , our goal is to determine the ai so that

q(0) = v0 q′(0) = s0 q(1) = v1 q′(1) = s1 q(τ) = vτ

We refer to this fourth degree Hermite interpolation problem as the “H4 problem” and to q as an “H4 interpolant.” Note that
its value is prescribed at three points and that at two of those points we also specify its slope. Complete the following function:

function A = H4(v0,s0,v1,s1,vtau,tau)

%

% Assume that the six inputs are length-n column vectors.

% A is an n-by-5 matrix with the property that if qi(t) is the quartic polynomial

%

% qi(t) = A(i,1) + A(i,2)t + A(i,3)t^2 + A(i,4)t^2(t-1) + A(i,5)t^2(t-1)^2

%

% then qi(0) = v0(i), qi’(0) = s0(i), qi(1) = v1(i), qi’(1) = s1(i), and qi(tau(i)) = vtau(i)

% for i=1:n.

Your implementation should not involve any loops. Also develop a vectorized implementation for evaluation:

function Y = H4Eval(A,tval)

% Assume that A is an n-by-5 matrix and that tval is a length-m row vector.

% For i=1:n, let qi(t) be the quartic polynomial

%

% qi(t) = A(i,1) + A(i,2)t + A(i,3)t^2 + A(i,4)t^2(1-t) + A(i,5)t^2(1-t)^2.

%

% Y is an n-by-m matrix with the property that Y(i,j) = qi(tval(j)) for

% i=1:n and j=1:m.

To test your implementations, write a script that plots in a single window the functions f(t), q1(t), and q2(t) where f(t) =
e−t sin(5t) and q1 and q2 are H4 interpolants that satisfy

q1(0) = f(0) q′1(0) = f ′(0) q1(1) = f(1) q′1(1) = f ′(1) q1(.5) = f(.5)

q2(1) = f(1) q′2(1) = f ′(1) q2(2) = f(2) q′2(2) = f ′(2) q2(1.5) = f(1.5).

There should be just a single call to H4 and H4Eval. In the same plot window, plot q1 across [0,1] and q2 across [1,2]. Print the

coefficients of the two interpolants.

16 CHAPTER 3. PIECEWISE POLYNOMIAL INTERPOLATION

3.3 Cubic Splines

In the piecewise cubic Hermite interpolation problem, we are given n triplets

(x1, y1, s1), . . . , (xn, yn, sn)

and determine a function C(x) that is piecewise cubic on the partition x1 < · · · < xn with the property that
C(xi) = yi and C ′(xi) = si for i = 1:n. This interpolation strategy is subject to a number of criticisms:

• The function C(z) does not have a continuous second derivative: Its display may be too crude in
graphical applications, because the human eye can detect discontinuities in the second derivative.

• In other applications where C and its derivatives are part of a larger mathematical landscape, there
may be difficulties if C ′′(x) is discontinuous. For example, trouble arises if C is a distance function.

• In experimental settings where the yi are “instrument readings,” we may not have the first derivative
information required by the cubic Hermite process. Indeed, the underlying function f may not be
known explicitly.

These reservations prompt us to pose the cubic spline interpolation problem:

Given (x1, y1), . . . , (xn, yn) with α = x1 < · · · < xn = β, find a
piecewise cubic interpolant S(z) with the property that S, S′, and
S′′ are continuous.

The function S(z) that solves this problem is a cubic spline interpolant. This can be accomplished by
choosing the appropriate slope values s1, . . . , sn.

3.3.1 Continuity at the Interior Breakpoints

Assume that S(z) is the cubic Hermite interpolant of the data (xi, yi, si) for i = 1:n. We ask the following
question: Is it possible to choose s1, . . . , sn so that the second derivative of S is continuous? Let us look at
what happens to S′′ at each of the “interior” breakpoints x2, . . . , xn−1. To the left of xi+1, S(z) is defined
by the local cubic

qi(z) = yi + si(z − xi) +
y′i − si

∆xi

(z − xi)
2 +

si + si+1 − 2y′i
(∆xi)2

(z − xi)
2(z − xi+1),

where y′i = (yi+1 − yi)/(xi+1 −xi) and ∆xi = xi+1 −xi. The second derivative of this local cubic is given by

q′′i (z) = 2
y′i − si

∆xi

+
si + si+1 − 2y′i

(∆xi)2
[4(z − xi) + 2(z − xi+1)] . (3.1)

Likewise, to the right of xi+1 the piecewise cubic C(z) is defined by

qi+1(z) = yi+1 + si+1(z − xi+1) +
y′i+1 − si+1

∆xi+1
(z − xi+1)

2 +
si+1 + si+2 − 2y′i+1

(∆xi+1)2
(z − xi+1)

2(z − xi+2).

The second derivative of this local cubic is given by

q′′i+1(z) = 2
y′i+1 − si+1

∆xi+1
+

si+1 + si+2 − 2y′i+1

(∆xi+1)2
[4(z − xi+1) + 2(z − xi+2)] . (3.2)

To force second derivative continuity at xi+1, we insist that

q′′i (xi+1) =
2

∆xi

(2si+1 + si − 3y′i)

3.3. CUBIC SPLINES 17

and

q′′i+1(xi+1) =
2

∆xi+1
(3y′i+1 − 2si+1 − si+2)

be equal. That is,

∆xi+1si + 2 (∆xi + ∆xi+1) si+1 + ∆xisi+2 = 3
(
∆xi+1y

′

i + ∆xiy
′

i+1

)
(3.3)

for i = 1:n − 2. If we choose s1, . . . , sn to satisfy these equations, then S′′(z) is continuous.

Before we plunge into the resolution of these equations for general n, we acquire some intuition by
examining the n = 7 case. The equations designated by (3.3) are as follows:

i = 1 ⇒ ∆x2s1 + 2(∆x1 + ∆x2)s2 + ∆x1s3 = 3(∆x2y
′

1 + ∆x1y
′

2)

i = 2 ⇒ ∆x3s2 + 2(∆x2 + ∆x3)s3 + ∆x2s4 = 3(∆x3y
′

2 + ∆x2y
′

3)

i = 3 ⇒ ∆x4s3 + 2(∆x3 + ∆x4)s4 + ∆x3s5 = 3(∆x4y
′

3 + ∆x3y
′

4)

i = 4 ⇒ ∆x5s4 + 2(∆x4 + ∆x5)s5 + ∆x4s6 = 3(∆x5y
′

4 + ∆x4y
′

5)

i = 5 ⇒ ∆x6s5 + 2(∆x5 + ∆x6)s6 + ∆x5s7 = 3(∆x6y
′

5 + ∆x5y
′

6).

Notice that we have five constraints and seven parameters and therefore two “degrees of freedom.” If we
move two of the parameters (s1 and s7) to the right hand side and assemble the results in matrix-vector
form, then we obtain a 5-by-5 linear system

Ts(2:6) = T

s2

s3

s4

s5

s6

=

3(∆x2y
′

1 + ∆x1y
′

2) − ∆x2s1

3(∆x3y
′

2 + ∆x2y
′

3)

3(∆x4y
′

3 + ∆x3y
′

4)

3(∆x5y
′

4 + ∆x4y
′

5)

3(∆x6y
′

5 + ∆x5y
′

6) − ∆x5s7

= r,

where

T =

2(∆x1 + ∆x2) ∆x1 0 0 0

∆x3 2(∆x2 + ∆x3) ∆x2 0 0

0 ∆x4 2(∆x3 + ∆x4) ∆x3 0

0 0 ∆x5 2(∆x4 + ∆x5) ∆x4

0 0 0 ∆x6 2(∆x5 + ∆x6)

.

Matrices like this that are zero everywhere except on the diagonal, subdiagonal, and superdiagonal are said
to be tridiagonal.

Different choices for the end slopes s1 and sn yield different cubic spline interpolants. Having defined
the end slopes, the interior slopes s(2:n − 1) ar determined by solving an (n − 2)-by-(n − 2) linear system.
In each case that we consider here, the matrix of coefficients looks like

T =

t11 t12 0 · · · 0

∆x3 2(∆x2 + ∆x3) ∆x2

...

...
. . .

. . .
. . .

...
0 ∆xn−2 2(∆xn−3 + ∆xn−2) ∆xn−3

0 · · · 0 tn−2,n−3 tn−2,n−2

,

while the right-hand side r has the form

18 CHAPTER 3. PIECEWISE POLYNOMIAL INTERPOLATION

r =

r1

3(∆x3y
′

2 + ∆x2y
′

3)
...

3(∆xn−2y
′

n−3 + ∆xn−3y
′

n−2)
rn−2

.

As we show in the next subsection, the values of t11, t12, and r1 depend on how s1 is chosen. The values
of tn−2,n−3, tn−2,n−2, and rn−2 depend on how sn is defined. Moreover, the T matrices that emerge can be
shown to be nonsingular.

The following fragment summarizes what we have established so far about the linear system Ts(2:n−1) =
r:

n=length(x);

Dx = diff(x);

yp = diff(y) ./ Dx;

T = zeros(n-2,n-2);

r = zeros(n-2,1);

for i=2:n-3

T(i,i) = 2(Dx(i)+Dx(i+1));

T(i,i-1) = Dx(i+1);

T(i,i+1) = Dx(i);

r(i) = 3(Dx(i+1)*yp(i) + Dx(i)*yp(i+1));

end

This sets up all but the first and last rows of T and all but the first and last components of r. How T and r
are completed depends on the end conditions that are imposed on the spline.

3.3.2 The Complete Spline

The complete spline is obtained by setting s1 = µL and sn = µR, where µL and µR are given real values.
With these constraints, setting i = 1 and i = n − 2 in (3.3) gives

∆x2µL + 2(∆x1 + ∆x2)s2 + ∆x1s3 = 3(∆x2y
′

1 + ∆x1y
′

2)

∆xn−1sn−2 + 2(∆xn−2 + ∆xn−1)sn−1 + ∆xn−2µR = 3(∆xn−1y
′

n−2 + ∆xn−2y
′

n−1),

and so the first and last equations are given by

2(∆x1 + ∆x2)s2 + ∆x1s3 = 3(∆x2y
′

1 + ∆x1y
′

2) − ∆x2µL

∆xn−1sn−2 + 2(∆xn−2 + ∆xn−1)sn−1 = 3(∆xn−1y
′

n−2 + ∆xn−2y
′

n−1) − ∆xn−2µR.

Thus, the setting up of T and r and the resolution of s are completed with the fragment

T(1,1) = 2*(Dx(1) + Dx(2));

T(1,2) = Dx(1);

r(1) = 3*(Dx(2)*yp(1) + Dx(1)*yp(2)) - Dx(2)*muL;

T(n-2,n-2) = 2*(Dx(n-2) + Dx(n-1));

T(n-2,n-3) = Dx(n-1);

r(n-2) = 3*(Dx(n-1)*yp(n-2) + Dx(n-2)*yp(n-1)) - Dx(n-2)*muR;

s = [muL; T \ r(1:n-2) ; muR];

assuming that muL and muR house µL and µR, respectively.

3.3. CUBIC SPLINES 19

3.3.3 The Natural Spline

Instead of prescribing the slope of the spline at the endpoints, we can prescribe the value of its second
derivative. In particular, if we insist that µL = q′′1 (x1), then from (3.1) it follows that

µL = 2
y′1 − s1

∆x1
− 2

s1 + s2 − 2y′1
∆x1

,

from which we conclude that

s1 =
1

2

(
3y′1 − s2 −

µL

2
∆x1

)
.

Substituting this result into the i = 1 case of (3.3) and rearranging, we obtain

(2∆x1 + 1.5∆x2)s2 + ∆x1s3 = 1.5∆x2y
′

1 + 3∆x1y
′

2 +
µL

4
∆x1∆x2.

Likewise, by setting µR = q′′n−1(xn), then (3.2) implies

µR = 2
y′n−1 − sn−1

∆xn−1
+ 4

sn−1 + sn − 2y′n−1

∆xn−1
,

from which we conclude that

sn =
1

2

(
3y′n−1 − sn−1 +

µR

2
∆xn−1

)
.

Substituting this result into the i = n − 2 case of (3.3) and rearranging we obtain

∆xn−1sn−2 + (1.5∆xn−2 + 2∆xn−1)sn−1 = 3∆xn−1y
′

n−2 + 1.5∆xn−2y
′

n−1 −
µR

4
∆xn−2∆xn−1.

Thus, the setting up of T and r and the resolution of s are completed with the fragment

T(1,1) = 2*Dx(1) + 1.5*Dx(2);

T(1,2) = Dx(1);

r(1) = 1.5*Dx(2)*yp(1) + 3*Dx(1)*yp(2)) + Dx(1)*Dx(2)*muL/4;

T(n-2,n-2) = 1.5*Dx(n-2) + 2*Dx(n-1);

T(n-2,n-3) = Dx(n-1);

r(n-2) = 3*Dx(n-1)*yp(n-2) + 1.5*Dx(n-2)*yp(n-1) -Dx(n-2)*Dx(n-1)*muR;

stilde = T \ r;

s1 = (3*yp(1) - stilde(1) - muL*Dx(1)/2)/2;

sn = (3*yp(n-1) - stilde(n-2) + muR*Dx(n-1)/2)/2;

s = [s1; stilde; sn];

If µL = µR = 0, then the resulting spline is called the natural spline.

3.3.4 The Not-a-Knot Spline

This method for prescribing the end conditions is appropriate if no endpoint derivative information is avail-
able. It produces the not-a-knot spline. The idea is to ensure third derivative continuity at both x2 and
xn−1. Note from (3.1) that

q′′′i (x) = 6
si + si+1 − 2y′i

(∆xi)2
,

and so q′′′1 (x2) = q′′′2 (x2) says that

s1 + s2 − 2y′1
(∆x1)2

=
s2 + s3 − 2y′2

(∆x2)2
.

20 CHAPTER 3. PIECEWISE POLYNOMIAL INTERPOLATION

It follows that this will be the case if we set

s1 = −s2 + 2y′1 +

(
∆x1

∆x2

)2

, (s2 + s3 − 2y′2).

As a result of making the third derivative continuous at x2, the cubics q1(x) and q2(x) are identical.
Likewise, q′′′n−2(xn−1) = q′′′n−1(xn−1) says that

sn−2 + sn−1 − 2y′n−2

(∆xn−2)2
=

sn−1 + sn − 2y′n−1

(∆xn−1)2
.

It follows that this will be the case if we set

sn = −sn−1 + 2y′n−1 +

(
∆xn−1

∆xn−2

)2

(sn−2 + sn−1 − 2y′n−2).

Thus, the first and last equations for the not-a-knot spline are set up as follows:

q = Dx(1)*Dx(1)/Dx(2);

T(1,1)= 2*Dx(1) +Dx(2) + q;

T(1,2) = Dx(1) + q;

r(1) = Dx(2)*yp(1) + Dx(1)*yp(2)+2*yp(2)*(q+Dx(1));

q= Dx(n-1)*Dx(n-1)/Dx(n-2);

T(n-2,n-2) = 2*Dx(n-1) + Dx(n-2)+q;

T(n-2,n-3) = Dx(n-1)+q;

r(n-2) = Dx(n-1)*yp(n-2) + Dx(n-2)*yp(n-1) +2*yp(n-2)*(Dx(n-1)+q);

stilde = T\ r;

s1 = -stilde(1)+2*yp(1);

s1 = s1 + ((Dx(1)/Dx(2))̂2)*(stilde(1)+stilde(2)-2*yp(2));
sn = -stilde(n-2) +2*yp(n-1);

sn=sn+((Dx(n-1)/Dx(n-2))̂2)*(stilde(n-3)+stilde(n-2)-2*yp(n-2));
s=[s1;stilde;sn];

3.3.5 The Cubic Spline Interpolant

The function CubicSpline can be used to construct the cubic spline interpolant with any of the three
aforementioned types of end conditions. Here is its specification:

function [a,b,c,d] = CubicSpline(x,y,derivative,muL,muR)

% [a,b,c,d] = CubicSpline(x,y,derivative,muL,muR)

% Cubic spline interpolation with prescribed end conditions.

%

% x,y are column n-vectors. It is assumed that n >= 4 and x(1) < ... x(n).

% derivative is an integer (1 or 2) that specifies the order of the endpoint derivatives.

% muL and muR are the endpoint values of this derivative.

%

% a,b,c, and d are column (n-1)-vectors that define the spline S(z). On [x(i),x(i+1)],

%

% S(z) = a(i) + b(i)(z-x(i)) + c(i)(z-x(i))^2 + d(i)(z-x(i))^2(z-x(i+1).

%

% Usage:

% [a,b,c,d] = CubicSpline(x,y,1,muL,muR) S’(x(1)) = muL, S’(x(n)) = muR

% [a,b,c,d] = CubicSpline(x,y,2,muL,muR) S’’(x(1)) = muL, S’’(x(n)) = muR

% [a,b,c,d] = CubicSpline(x,y) S’’’(z) continuous at x(2) and x(n-1)

%

3.3. CUBIC SPLINES 21

Notice that a two-argument call is all that is required to produce the not-a-knot spline. The script
ShowSpline examines various CubicSpline interpolants to the sine function.

Error bounds for the cubic spline interpolant are complicated to derive. The bounds are not good if the
end conditions are improperly chosen. Figure 3.6 shows what can happen if the complete spline is used with
end conditions that are at variance with the behavior of the function being interpolated. However, if the

0 2 4 6 8 10 12 14
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
’Bad’ Complete spline interpolant of sin(x) with 6 subintervals

Figure 3.6 Bad end conditions

end values are properly chosen or if the not-a-knot approach is used, then the error bound has the form
M4h̄

4 where h̄ is the maximum subinterval length and M4 bounds the 4th derivative of the function being
interpolated. The script ShowSplineErr confirms this for the case of an “easy” f(x). It produces the plots
shown in Figure 3.7. Notice that the error is reduced by a factor of 104 if the subinterval length is reduced

0 0.2 0.4 0.6 0.8 1
10

−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Knot Spacing = 0.050
0 0.2 0.4 0.6 0.8 1

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Knot Spacing = 0.005

Figure 3.7 Not-a-knot spline error

by a factor of ten.

3.3.6 Matlab Spline Tools

The Matlab function spline can be used to compute not-a-knot spline interpolants. It can be called with
either two or three arguments. The script

22 CHAPTER 3. PIECEWISE POLYNOMIAL INTERPOLATION

z = linspace(-5,5);

x = linspace(-5,5,9);

y = atan(x);

Svals = spline(x,y,z);

plot(z,Svals);

illustrates a three-argument call. It plots the n = 9 not-a-knot spline interpolant of the function f(x) =
arctan(x) across the interval [−5, 5]. The first two arguments in the call to spline specify the interpolation
points that define the spline S. The spline is then evaluated at z with the values returned in Svals. Thus
S(x(i)) = y(i) for i=1:length(x) and S(z(i)) = Svals(i) for i=1:length(z).

A 2-argument call to spline returns what is called the pp-representation of the spline. This type of
reference is required whenever one has to manipulate the local cubics that make up the spline. The pp-
representation of a spline is different from the four-vector representation that we have been using for piecewise
cubics. For one thing, it is more general because it can accommodate piecewise polynomials of arbitrary
degree.

To gain a facility with Matlab’s piecewise polynomial tools, let’s consider the problem of constructing
the pp-representation of the derivative of a cubic spline S. In particular, let’s plot S′ where S is a nine-point,
equally spaced, not-a-knot spline interpolant of the arctangent function across the interval [−5, 5]. We start
by constructing the pp-representation of S:

x = linspace(-5,5,9);

y = atan(x);

S = spline(x,y)

A two-argument call to spline such as this produces the pp-representation of the spline. The ppval function
can be used to evaluate a piecewise polynomial in this representation:

z = linspace(-5,5);

Svals = ppval(S,z);

plot(z,Svals)

The call to ppval returns the value of the spline at z. The vector Svals contains the values of the spline on
z. These values are then plotted.

The derivative of the spline is a piecewise quadratic polynomial, and by using the functions unmkpp and
mkpp we can produce its pp-representation. A call to unmkpp unveils the four major components of the
pp-representation:

[x,rho,L,k] = unmkpp(S)

The x-values are returned in x. The coefficients of the local polynomials are assembled in an L-by-k matrix
rho. L is the number of local polynomials and k-1 is their degree. So in our case, x = linspace(-5,5,9), L
= 8, and k=4. The coefficients of the i-th local cubic are stored in ith row of the rho matrix. In particular,
the spline is defined by

S(z) = ρi,4 + ρi,3(z − xi) + ρi,2(z − xi)
2 + ρi,1(z − xi)

3

on the interval [xi, xi+1]. Thus, rho(i,j) is the ith local polynomial coefficient of (x − xi)
k−j+1.

The function mkpp takes the breakpoints and the array of coefficients and produces the pp-representation
of the piecewise polynomial so defined. Thus, to set up the pp-representation of the spline’s derivative, we
execute

drho = [3*rho(:,1) 2*rho(:,2) rho(:,3)];

dS = mkpp(x,drho);

The set-up of the three-column matrix drho follows from the observation that

S′(x) = ρi,3 + 2ρi,2(x − xi) + 3ρi,1(x − xi)
2

on the interval [xi, xi+1]. Putting it all together, we obtain

3.3. CUBIC SPLINES 23

% Script File: ShowSplineTools

% Illustrates the Matlab functions spline, ppval, mkpp, unmkpp

close all

% Set Up Data:

n = 9;

x = linspace(-5,5,n);

y = atan(x);

% Compute the spline interpolant and its derivative:

S = spline(x,y);

[x,rho,L,k] = unmkpp(S);

drho = [3*rho(:,1) 2*rho(:,2) rho(:,3)];

dS = mkpp(x,drho);

% Evaluate S and dS:

z = linspace(-5,5);

Svals = ppval(S,z);

dSvals = ppval(dS,z);

% Plot:

atanvals = atan(z);

figure

plot(z,atanvals,z,Svals,x,y,’*’);

title(sprintf(’n = %2.0f Spline Interpolant of atan(x)’,n))

datanvals = ones(size(z))./(1 + z.*z);

figure

plot(z,datanvals,z,dSvals)

title(sprintf(’Derivative of n = %2.0f Spline Interpolant of atan(x)’,n))

Problems

P3.3.1 What can you say about the n = 4 not-a-knot spline interpolant of f(x) = x3?

P3.3.2 Suppose S(z) is the not-a-knot spline interpolant of (x1, y1), (x2, y2), (x3, y3), and (x4, y4) where it is assumed that
the xi are distinct. Suppose p(x) is the cubic interpolant at same four points. Explain why S(z) = p(z) for all z.

P3.3.3 Let S(z) be the natural spline interpolant of z3 at z = −3, z = −1, z = 1, z = 3. What is S(0)?

P3.3.4 Given σ > 0, (xi, yi, si), and (xi+1, yi+1, si+1), show how to determine ai, bi, ci, and di so that

gi(x) = ai + bi(x − xi) + cie
σ(x−xi) + die

−σ(x−xi)

satisfies gi(xi) = yi, g′i(xi) = si, gi(xi+1) = yi+1, and g′i(xi+1) = si+1.

P3.3.5 Another approach that can be used to make up for a lack of endpoint derivative information is to glean that information
from a four-point cubic interpolant. For example, if qL(x) is the cubic interpolant of (x1, y1), (x2, y2), (x3, y3), and (x4, y4),
then either of the endpoint conditions

q′1(x1) = q′L(x1)

q′′1 (x1) = q′′L(x1)

is reasonable, where q1(x) is the leftmost local cubic. Likewise, if qR(x) is the cubic interpolant of (xn−3, yn−3), (xn−2, yn−2),
(xn−1, yn−1), and (xn, yn), then either of the right endpoint conditions

q′n−1(xn) = q′R(xn)

q′′n−1(xn) = q′′R(xn)

is reasonable, where qn−1(x) is the rightmost local cubic.
Modify CubicSpline so that it invokes this strategy whenever the function call involves just three arguments, (i.e., [a,b,c,d]

= CubicSpline(x,y,derivative.) The value of derivative should determine which derivative is to be matched at the endpoints.

24 CHAPTER 3. PIECEWISE POLYNOMIAL INTERPOLATION

(Its value should be 1 or 2.) Augment the script file ShowSpline so that it graphically depicts the splines that are produced by
this method.

P3.3.6 Explain how Matlab’s spline tools can be used to compute

Z β

α

[S′′(x)]2dx,

where S(x) is a cubic spline.

P3.3.7 Suppose S(x) is a cubic spline interpolant of the data (x1, y1), . . . , (xn, yn) obtainedusing spline. Write a Matlab function
d3 = MaxJump(S) that returns the maximum jump in the third derivative of the spline S assumed to be in the pp-representation.
Vectorize as much as possible. Use the max function.

P3.3.8 Write a Matlab function S = Convert(a,b,c,d,x) that takes our piecewise cubic interpolant representation and con-
verts it into pp form.

P3.3.9 Complete the following function:

function [a,b,c,d] = SmallSpline(z,y)

% z is a scalar and y is 3-vector.

% a,b,c,d are column 2-vectors with the property that if

%

% S(x) = a(1) + b(1)(x - z) + c(1)(x - z)^2 + d(1)(x - z)^3 on [z-1,z]

% and

% S(x) = a(2) + b(2)(x - z) + c(2)(x - z)^2 + d(2)(x - z)^3 on [z,z+1]

% then

% (a) S(z-1) = y(1), S(z) = y(2), S(z+1) = y(3),

% (b) S’’(z-1) = S’’(z+1) = 0

% (c) S, S’, and S’’ are continuous on [z-1,z+1]

%

P3.3.10 In computerized typography the problem arises of finding an interpolant to points that lie on a path in the plane (e.g.,
a printed capital S). Such a shape cannot be represented as a function of x because it is not single valued. One approach is
to number the points (x1, y1), . . . , (xn, yn) as we traverse the curve. Let di be the straight-line distance between (xi, yi) and
(xi+1, yi+1), i = 1:n − 1. Set ti = d1 + · · · + di−1, i = 1:n. Suppose Sx(t) is a spline interpolant of (t1, x1), . . . , (tn, xn) and
that Sy (t) is a spline interpolant of (t1, y1), . . . , (tn, yn).

It follows that the curve Λ = {(Sx(t), Sy(t)) : t1 ≤ t ≤ tn} is smooth and passes through the n points. Write a
Matlab function [xi,yi] = SplineInPlane(x,y,m) that returns in xi(1:m) and yi(1:m) the x-y coordinates of m points
on the curve Λ. Use the Matlab Spline function to determine the splines Sx(t) and Sy(t).

To test SplineInPlane write a script that solicits an arbitrary number of points from the plot window using ginput. It
should echo your mouseclicks by placing an asterisk at each point. After all the points are acquired it should compute the
splines Sx and Sy defined above and then plot the curve Λ. Use hold on so that the asterisks are also displayed.

Submit listings and sample output showing a personally designed letter “S”. The number of input points used is up to you.

P3.3.11 Let S(x) be the not-a-knot cubic spline interpolant of (0,0), (1,1), (2,8), (3,27). Explain why S(3/2) = (3/2)3.

P3.3.12 Suppose x and y are column n-vectors with x1 < x2 < · · · < xn. If z is a column m-vector, then sval = spline(x,y,z)

is a column m-vector with the property that sval(i) = S(zi), where S the not-a-knot spline interpolant of (x1, y1), . . . , (xn, yn).

Let
S1(x) be the not-a-knot spline interpolant of sin(x) at xi = (i − 1)/10, i = 1:21

S2(x) be the not-a-knot spline interpolant of exp(x) at xi = (i − 1)/10, i = 1:21

S3(x) be the not-a-knot spline interpolant of sin(x) · exp(x) at xi = (i − 1)/10, i = 1:21

S4(x) be the not-a-knot spline interpolant of 2 sin(x) + 3 exp(x) at xi = (i − 1)/10, i = 1:21

Write a vectorized Matlab script that plots in a single window these four splines across the interval [0,2]. The plots
should be based on one-hundred, equally-spaced evaluations. Avoid unnecessary function calls. You do not have to exploit any
trigonometric or exponential identities.

P3.3.13 Produce a plot that shows that it is a bad idea to interpolate with the natural spline if the second derivative of the
underlying function is not zero at the endpoints.

P3.3.14 Suppose f(t) and its first two derivatives are defined everywhere. If f has period T (positive), then f(t + T) = f(t)
for all t. Consider the problem of interpolating such a function on an interval [τ, τ + T] with a spline S having breakpoints

τ = t1 < · · · < tn = τ + T.

M-FILES AND REFERENCES 25

It makes sense to require

S′(τ) = S′(τ + T)

S′′(τ) = S′′(τ + T),

since f ′(τ) = f ′(τ + T) and f ′′(τ) = f ′′(τ + T). Moreover, we can then extend S periodically off the “base” interval [τ, τ + T]
and obtain a piecewise cubic interpolant that is continuous through the second derivative. (a) Modify CubicSpline so that a
3-argument call of the form

[a,b,c,d] = CubicSpline(x,y,0)

produces the periodic spline interpolant. In other words,

S(xi) = yi

S′(x1) = S′(xn)

S′′(x1) = S′′(xn)

where i = 1:n and n is the length of x. Test your adaptation with the function

f(x) = sin(2πx) − .3 · cos(4πx) + .6 · sin(6πx) + .2 · cos(8πx)

by generating its periodic spline interpolant on linspace(0,1,15). Print a table of the coefficients a(1:14), b(1:14), c(1:14), and
d(1:14) and plot both f and the spline across [0, 1]. (b) A not-a-knot spline interpolant of f across [τ, τ + T] will in general
not be periodic. However, we can make it “almost” periodic by choosing t2 = t1 + δ and tn−1 = tn − δ for small δ. Write a
function

function s = Periodic(f,t1,T,n,del)

% f is a handle that references an available function f(t) that has period T and is defined

% everywhere. t1 is a real scalar, n is an integer >= 4, and del a positive scalar that

% satisfies del < T/2.

%

% s is the pp-form of the not-a-knot spline that interpolates f at t(1),...,t(n) where

%

% t1 if k=1

% t1 + del if k=2

% t(k) = t1 + del + (k-2)*(T-2*del)/(n-3) if k=3:n-2

% t1 + T-del if k=n-1

% t1 + T if k=n

%

% A four-parameter reference of the form s = Periodic(f,t1,T,n) should

% return the not-a-knot spline interpolant of f at linspace(t1,t1+T,n).

M-Files and References

Script Files

ShowpwL1 Illustrates pwL and pwLeval.
ShowpwL2 Compares pwLstatic and pwLadapt.
ShowHermite Illustrates the Hermite interpolation idea.
ShowpwC Illustrates pwC and pwCeval.
ShowSpline Illustrates CubicSpline.
ShowSplineErr Explores the not-a-knot spline interpolant error.
ShowMatSplineTools Illustrates Matlab spline tools.

26 CHAPTER 3. PIECEWISE POLYNOMIAL INTERPOLATION

Function Files

Locate Determines the subinterval in a mesh that houses a given x-value
pwL Sets up a piecewise linear interpolant.
pwLeval Evaluates a piecewise linear function.
pwLstatic A priori determination of a mesh for a pwL approximation.
pwLadapt Dynamic determination of a mesh for a pwL approximation.
HCubic Constructs the cubic Hermite interpolant.
pwC Sets up a piecewise cubic Hermite interpolant.
pwCeval Evaluates a piecewise cubic function.
CubicSpline Constructs complete, natural, or not-a-knot spline.

References

R. Bartels, J. Beatty, and B. Barsky (1987). An Introduction to Splines for Use in Computer Graphics and

Geometric Modeling, Morgan Kaufmann, Los Altos, CA.

C. de Boor (1978). A Practical Guide to Splines, Springer, Berlin.

