
CS4210 Assignment 7 Due: 12/5/14 (Fri) at 6pm

You must work either on your own or with one partner. You may discuss background issues and general solution

strategies with others, but the solutions you submit must be the work of just you (and your partner). If you work with

a partner, you and your partner must first register as a group in CMS and then submit your work as a group. Points

may be deducted for poor style and reckless inefficiency.

Topics: Methods for Boundary Value Problems, B-spline review, matrix set-up

1 The Collocation Method

In this problem you are to compute an approximate solution ũ(x) to the boundary value problem

−u′′(x) + q(x)u(x) = r(x) a ≤ x ≤ b (1)

u(a) = ua u(b) = ub (2)

using the method of collocation. The idea is to express ũ(x) as a linear combination of simple basis functions.
The coefficients that define the linear combination are then determined via a linear system that is obtained by
imposing certain conditions on ũ(x).

For basis functions we will use the B-splines B0(x), . . . , Bn+1(x) that were introduced in A3. In particular,
we will seek an approximate solution to (1) of the form

ũ(x) =

n+1
∑

k=0

αkBk(x)

where

Bk(x) = B∗

(

x − xk

h

)

with h = (b − a)/(n − 1) and
xk = a + (k − 1)h k = 0:n + 1.

Recall that A3 was about interpolation with B-splines. In that assignment we also determined α0, . . . , αn+1

via a linear system solve. The linear equations enforced interpolation conditions

ũ(xi) = yi i = 1:n.

and a pair of end conditions, e.g., u′′(a) = 0, u′′(b) = 0.
For the BVP (1)-(2) we proceed similarly. As in A3, the linear equations stipulate the properties that we

want ũ(x) to satisfy. The first of these is the left boundary condition:

ũ(a) = ũ(x1) = ua

Next, we insist that the differential equation is satisfied by ũ(x) at the collocation points x1, . . . , xn:

−ũ′′(xi) + q(xi)ũ(xi) = r(xi) i = 1:n. (3)

Lastly, we want to be sure that the right boundary condition is satisfied:

ũ(b) = ũ(xn) = ub

You job is to implement a function that does this:
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function alpha = BVP_Collocation(a,ua,b,ub,q,r,n)

% a<b and ua and ub are scalars.

% q and r are handles to functions q(x) and r(x) defined on [a,b].

% n is a positive integer, n >=2.

% alpha is a column (n+2)-vector with the property that if

%

% utilde(x) = alpha(1)B_0(x) + ... + alpha(n+2)*B_{n+1}(x)

%

% then

% utilde(a) = ua

% -utilde’’(z(i)) + q(z(i))u(z(i)) = r(z(i)) i=1:n

% utilde(b) = ub

%

% where z = linspace(a,b,n) and

% B_{k}(z) is the B-spline Bstar((z-xk)/h) where xk = a+(k-1)h

% and h = (b-a)/(n-1).

(Sorry for the subscript-from-one annoyances.) A test script ShowCollocation is provided that can be used
to compare your implementation with an analogous procedure based on the method of finite differences. (You
will also need to download BVP FiniteDiff).

In this problem we are NOT concerned with the efficient set up of the linear system that specifies the α’s.
Assignment A3 gave you enough practice with that, i.e., the exploitation of the local support feature of the
B-spline basis. Clearly, that “technology” can be exploited here. Our goal is simply for you to appreciate the
collocation framework by using it to solve a simple problem. So that you do not get bogged down in low-level
details associated with the evaluation of the Bk and their derivatives, we supply the following function on the
website:

function [y,dy,ddy] = derBstar(z)

% z is a scalar

% y = Bstar(z)

% dy = Bstar’(z)

% ddy = Bstar’’(z)

(Note that the equations in (3) involve second derivatives of the Bk evaluated at the xi.) Again, don’t spend
time vectorizing or exploiting the local support properties of the basis function–just set up the linear system
correctly and use \. Submit BVP Collocation to CMS.

2 The Crank-Nicholson Method for the Heat Equation

Here is a simple version of the heat equation:

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t) + s(x, t) a ≤ x ≤ b, t ≥ 0 (4)

Think of u(x, t) as the temperature of a rod at time t where s(x, t) is a given heat-source function. The
temperature at the start is known,

u(x, t) = u(0)(x) a ≤ x ≤ b

and remains the same at the endpoints

u(a, t) = u(0)(a) = ua u(b, t) = u(0)(b) = ub t ≥ 0. (5)

For us, the discretization of this problem involves two parameters. One involves space and one involves time:

h = (b − a)/(n − 1) ∆t > 0.

The goal is to produce approximations

u
(j)
k ≈ u(xk, tj)
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where xk = a + (k − 1)h for k = 1:n and tj = j∆t for j = 0, 1, 2, . . .. Since the value of u(x, t) is fixed at the
endpoints (see equation (4)), we set

u
(j)
1 = ua u(j)

n = ub j = 0, 1, 2, . . .

The Crank-Nicholson scheme relates the approximate solution at time tj+1 to the approximate solution at
time tj as follows:

u
(j+1)
k − u

(j)
k

∆t

=
1

2









u
(j)
k+1 − u

(j)
k

h
−

u
(j)
k − u

(j)
k−1

h
h

+

u
(j+1)
k+1 − u

(j+1)
k

h
−

u
(j+1)
k − u

(j+1)
k−1

h
h









+ s

(

xk, tj +
∆t

2

)

Assume that we know u
(j)
k , k = 1:n and want to compute u

(j+1)
k , k = 1:n. Of course, the endpoint values are

known,

u
(j)
1 = u

(j+1)
1 = ua u(j)

n = u(j+1)
n = ub

so it is all about computing u
(j+1)
2 , . . . , u

(j+1)
n−1 from known stuff. Using the giant Crank-Nicholson divided

difference recipe above, show that we have an (n − 2)-by-(n − 2) linear system of the form

T









u
(j+1)
2
...

u
(j+1)
n−1









= rhs that involves u
(j)
1 , . . . , u

(j)
n , h, ∆t, s-evaluations

Complete the following function so that it carries out a Crank-Nicholson step

function uNext = CrankN(uNow,a,b,n,tc,deltaT,s)

% uNow is a column n-vector.

% a < b

% n is a positive integer

% tc is the ‘‘current time’’.

% deltaT >0 is the time step.

% s is a handle to a function of the form s(x,t)

% uNext is a column n-vector whose entries satisfy uNext(1) = uNow(1),

% uNext(n) = uNow(n), and

% uNew(k) - uNow(k) 1 (uNew(k+1)-2*uNew(k)+uNew(k-1))

% ----------------- = --- ----------------------------- +

% deltaT 2 h^2

% 1 (uNow(k+1)-2*uNow(k)+uNow(k-1))

% --- ----------------------------- + s(x(k),tc+deltaT/2)

% 2 h^2

% for k=2:n-1 where

h = (b-a)/(n-1);

x = linspace(a,b,n);

It is fine for you NOT to exploit T ’s sparse structure. Just set it up explicitly and use \. A test script ShowHeat
is provided. Submit CrankN to CMS.
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3 The Shooting Method for a Two-Point Boundary Value Problem

The function Cannon v0(v0) solves the A5 initial value problem

ẋ = v(t) cos(θ(t))

ẏ = v(t) sin(θ(t))

θ̇ = −g/v(t) cos(θ(t))

v̇ = −D(t)/m − g sin(θ(t))

where
D(t) =

cρs

2
((ẋ(t) + w)2 + ẏ2)

and x(0) = 0, y(0) = 0, θ(0), and v(0) = v0 are the given initial conditions. For a given input v0, the function
displays a table that reports just how far the cannonball travels for various initial angles and constant wind
speeds, e.g.,

v0 = 50.000

Cannonball Distance as a function of initial angle A (degrees) and headwind w

A w = -20 w = -10 w = 0 w = 10 w = 20

---------------------------------------------------------------------------

10 83.496 80.871 77.674 74.008 69.970

15 119.756 114.473 108.154 101.090 93.474

20 151.314 143.057 133.235 122.421 111.029

25 177.530 166.358 153.130 138.620 123.540

30 197.824 184.134 167.840 150.027 131.618

35 211.767 196.244 177.446 156.887 135.705

40 219.044 202.618 182.094 159.575 136.283

45 219.433 203.202 182.118 158.356 133.729

50 212.964 198.261 177.480 153.422 128.359

55 199.771 187.671 168.312 144.925 120.099

60 180.184 171.603 154.651 132.812 109.077

65 154.354 150.089 136.694 117.485 95.906

70 124.483 124.475 115.042 99.226 80.450

Develop an analogous function Cannon d(d) that determines the required initial velocity v0 so that the can-
nonball travels exactly distance d before landing. Sample output:

Required travel distance = 200.000

Required initial velocity as a function of initial angle A (degrees) and headwind w

A w = -20 w = -10 w = 0 w = 10 w = 20

---------------------------------------------------------------------------

10 82.241 85.022 88.442 92.584 97.557

15 67.241 69.858 73.252 77.549 82.915

20 58.850 61.341 64.743 69.214 74.987

25 53.638 56.048 59.478 64.174 70.367

30 50.326 52.667 56.161 61.083 67.771

35 48.317 50.607 54.206 59.389 66.698

40 47.331 49.582 53.289 58.842 66.879

45 47.258 49.484 53.347 59.348 68.290

50 48.119 50.288 54.386 60.961 71.097

55 50.035 52.181 56.575 64.015 75.496

60 53.465 55.525 60.423 68.819 82.458

65 59.164 61.121 66.178 76.804 93.710

70 69.047 70.784 77.324 89.973 113.175
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To do this you need to understand and make use of the Matlab root-finder fzero. A simple example tells
all. Suppose

function z = MyF(x,a)

z = a*x^2 - 20;

is available. We know that if a = 2 then this function has a single root in the interval [3,4]. The following
script assigns the root to r:

a = 2;

L = 3;

R = 4;

Bracketing_Interval = [L,R]; % Contains the root of interest

r = fzero(@(x) MyF(x,a),Bracketing_Interval)

Now here is what you do to compute the “magic v0, i.e., the initial velocity so that when the cannonball lands,
x(tfinal) = xfinal = d. Suppose F(v0,theta,w,d) is a function that runs ode45 with the same terminate-on-
landing event function and with initial condition [0;0;theta;v0]. If F returns the value of xfinal − d, then
it evaluates to zero precisely when v0 is the required initial velocity, i.e., the initial velocity that causes the
terminating value of x to be d. Thus, to produce Cannon d(d) you need to adjust Cannon v0 so that (a) it
includes the subfunction F just described and (b) it replaces the function d = HowFar(theta,w,v0) with a
function v0 = HowFast(theta,w,d) that returns the required initial velocity. HowFast is essentially a one-liner
that calls fzero. Think a little bit about the required bracketing interval that you pass to fzero. The smaller
the interval the fewer the number of F-calls and that means a reduced number of f-evaluations overall. Include
comments on how you pick the bracketing interval. Note: fzero is unhappy if there is no root in the bracketing
interval. You may assume that the incoming d satisfies 10 ≤ d ≤ 500. Submit Cannon d to CMS.
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