CS4210 Assignment 7 Due: 12/5/14 (Fri) at 6pm

You must work either on your own or with one partner. You may discuss background issues and general solution strategies with others, but the solutions you submit must be the work of just you (and your partner). If you work with a partner, you and your partner must first register as a group in CMS and then submit your work as a group. Points may be deducted for poor style and reckless inefficiency.

Topics: Methods for Boundary Value Problems, B-spline review, matrix set-up

1 The Collocation Method

In this problem you are to compute an approximate solution $\tilde{u}(x)$ to the boundary value problem

$$
\begin{gather*}
-u^{\prime \prime}(x)+q(x) u(x)=r(x) \quad a \leq x \leq b \tag{1}\\
u(a)=u_{a} \quad u(b)=u_{b} \tag{2}
\end{gather*}
$$

using the method of collocation. The idea is to express $\tilde{u}(x)$ as a linear combination of simple basis functions. The coefficients that define the linear combination are then determined via a linear system that is obtained by imposing certain conditions on $\tilde{u}(x)$.

For basis functions we will use the B-splines $B_{0}(x), \ldots, B_{n+1}(x)$ that were introduced in A3. In particular, we will seek an approximate solution to (1) of the form

$$
\tilde{u}(x)=\sum_{k=0}^{n+1} \alpha_{k} B_{k}(x)
$$

where

$$
B_{k}(x)=B_{*}\left(\frac{x-x_{k}}{h}\right)
$$

with $h=(b-a) /(n-1)$ and

$$
x_{k}=a+(k-1) h \quad k=0: n+1
$$

Recall that A3 was about interpolation with B-splines. In that assignment we also determined $\alpha_{0}, \ldots, \alpha_{n+1}$ via a linear system solve. The linear equations enforced interpolation conditions

$$
\tilde{u}\left(x_{i}\right)=y_{i} \quad i=1: n .
$$

and a pair of end conditions, e.g., $u^{\prime \prime}(a)=0, u^{\prime \prime}(b)=0$.
For the BVP (1)-(2) we proceed similarly. As in A3, the linear equations stipulate the properties that we want $\tilde{u}(x)$ to satisfy. The first of these is the left boundary condition:

$$
\tilde{u}(a)=\tilde{u}\left(x_{1}\right)=u_{a}
$$

Next, we insist that the differential equation is satisfied by $\tilde{u}(x)$ at the collocation points x_{1}, \ldots, x_{n} :

$$
\begin{equation*}
-\tilde{u}^{\prime \prime}\left(x_{i}\right)+q\left(x_{i}\right) \tilde{u}\left(x_{i}\right)=r\left(x_{i}\right) \quad i=1: n \tag{3}
\end{equation*}
$$

Lastly, we want to be sure that the right boundary condition is satisfied:

$$
\tilde{u}(b)=\tilde{u}\left(x_{n}\right)=u_{b}
$$

You job is to implement a function that does this:

```
    function alpha = BVP_Collocation(a,ua,b,ub,q,r,n)
% a<b and ua and ub are scalars.
% q and r are handles to functions q(x) and r(x) defined on [a,b].
% n is a positive integer, n >=2.
% alpha is a column (n+2)-vector with the property that if
%
% utilde(x) = alpha(1)B_0(x) + ... + alpha(n+2)*B_{n+1}(x)
%
% then
% utilde(a) = ua
% -utilde''(z(i)) + q(z(i))u(z(i)) = r(z(i)) i=1:n
% utilde(b) = ub
%
% where z = linspace(a,b,n) and
% B_{k}(z) is the B-spline Bstar((z-xk)/h) where xk = a+(k-1)h
% and h = (b-a)/(n-1).
```

(Sorry for the subscript-from-one annoyances.) A test script ShowCollocation is provided that can be used to compare your implementation with an analogous procedure based on the method of finite differences. (You will also need to download BVP_FiniteDiff).

In this problem we are NOT concerned with the efficient set up of the linear system that specifies the α 's. Assignment A3 gave you enough practice with that, i.e., the exploitation of the local support feature of the B-spline basis. Clearly, that "technology" can be exploited here. Our goal is simply for you to appreciate the collocation framework by using it to solve a simple problem. So that you do not get bogged down in low-level details associated with the evaluation of the B_{k} and their derivatives, we supply the following function on the website:

```
    function [y,dy,ddy] = derBstar(z)
% z is a scalar
% y = Bstar(z)
% dy = Bstar'(z)
% ddy = Bstar''(z)
```

(Note that the equations in (3) involve second derivatives of the B_{k} evaluated at the x_{i}.) Again, don't spend time vectorizing or exploiting the local support properties of the basis function-just set up the linear system correctly and use \backslash. Submit BVP_Collocation to CMS.

2 The Crank-Nicholson Method for the Heat Equation

Here is a simple version of the heat equation:

$$
\begin{equation*}
\frac{\partial}{\partial t} u(x, t)=\frac{\partial^{2}}{\partial x^{2}} u(x, t)+s(x, t) \quad a \leq x \leq b, \quad t \geq 0 \tag{4}
\end{equation*}
$$

Think of $u(x, t)$ as the temperature of a rod at time t where $s(x, t)$ is a given heat-source function. The temperature at the start is known,

$$
u(x, t)=u^{(0)}(x) \quad a \leq x \leq b
$$

and remains the same at the endpoints

$$
\begin{equation*}
u(a, t)=u^{(0)}(a)=u_{a} \quad u(b, t)=u^{(0)}(b)=u_{b} \quad t \geq 0 . \tag{5}
\end{equation*}
$$

For us, the discretization of this problem involves two parameters. One involves space and one involves time:

$$
h=(b-a) /(n-1) \quad \Delta_{t}>0 .
$$

The goal is to produce approximations

$$
u_{k}^{(j)} \approx u\left(x_{k}, t_{j}\right)
$$

where $x_{k}=a+(k-1) h$ for $k=1: n$ and $t_{j}=j \Delta_{t}$ for $j=0,1,2, \ldots$. Since the value of $u(x, t)$ is fixed at the endpoints (see equation (4)), we set

$$
u_{1}^{(j)}=u_{a} \quad u_{n}^{(j)}=u_{b} \quad j=0,1,2, \ldots
$$

The Crank-Nicholson scheme relates the approximate solution at time t_{j+1} to the approximate solution at time t_{j} as follows:

Assume that we know $u_{k}^{(j)}, k=1: n$ and want to compute $u_{k}^{(j+1)}, k=1: n$. Of course, the endpoint values are known,

$$
u_{1}^{(j)}=u_{1}^{(j+1)}=u_{a} \quad u_{n}^{(j)}=u_{n}^{(j+1)}=u_{b}
$$

so it is all about computing $u_{2}^{(j+1)}, \ldots, u_{n-1}^{(j+1)}$ from known stuff. Using the giant Crank-Nicholson divided difference recipe above, show that we have an $(n-2)$-by- $(n-2)$ linear system of the form

$$
T\left[\begin{array}{c}
u_{2}^{(j+1)} \\
\vdots \\
u_{n-1}^{(j+1)}
\end{array}\right]=\text { rhs that involves } u_{1}^{(j)}, \ldots, u_{n}^{(j)}, h, \Delta_{t}, s \text {-evaluations }
$$

Complete the following function so that it carries out a Crank-Nicholson step

```
    function uNext = CrankN(uNow,a,b,n,tc,deltaT,s)
% uNow is a column n-vector.
% a < b
% n is a positive integer
% tc is the ''current time').
% deltaT >0 is the time step.
% s is a handle to a function of the form s(x,t)
% uNext is a column n-vector whose entries satisfy uNext(1) = uNow(1),
% uNext(n) = uNow(n), and
l uNew(k)- uNow(k) 
% for k=2:n-1 where
h = (b-a)/(n-1);
x = linspace(a,b,n);
```

It is fine for you NOT to exploit T 's sparse structure. Just set it up explicitly and use \backslash. A test script ShowHeat is provided. Submit CrankN to CMS.

3 The Shooting Method for a Two-Point Boundary Value Problem

The function Cannon_v0 (v0) solves the A5 initial value problem

$$
\begin{aligned}
\dot{x} & =v(t) \cos (\theta(t)) \\
\dot{y} & =v(t) \sin (\theta(t)) \\
\dot{\theta} & =-g / v(t) \cos (\theta(t)) \\
\dot{v} & =-D(t) / m-g \sin (\theta(t))
\end{aligned}
$$

where

$$
D(t)=\frac{c \rho s}{2}\left((\dot{x}(t)+w)^{2}+\dot{y}^{2}\right)
$$

and $x(0)=0, y(0)=0, \theta(0)$, and $v(0)=v_{0}$ are the given initial conditions. For a given input v0, the function displays a table that reports just how far the cannonball travels for various initial angles and constant wind speeds, e.g.,

$$
\mathrm{v} 0=50.000
$$

Cannonball Distance as a function of initial angle A (degrees) and headwind w

10	83.496	80.871	77.674	74.008	69.970
15	119.756	114.473	108.154	101.090	93.474
20	151.314	143.057	133.235	122.421	111.029
25	177.530	166.358	153.130	138.620	123.540
30	197.824	184.134	167.840	150.027	131.618
35	211.767	196.244	177.446	156.887	135.705
40	219.044	202.618	182.094	159.575	136.283
45	219.433	203.202	182.118	158.356	133.729
50	212.964	198.261	177.480	153.422	128.359
55	199.771	187.671	168.312	144.925	120.099
60	180.184	171.603	154.651	132.812	109.077
65	154.354	150.089	136.694	117.485	95.906
70	124.483	124.475	115.042	99.226	80.450

Develop an analogous function Cannon_d(d) that determines the required initial velocity v_{0} so that the cannonball travels exactly distance d before landing. Sample output:

Required travel distance $=200.000$
Required initial velocity as a function of initial angle A (degrees) and headwind w

A	$w=-20$	$w=-10$	$w=0$	$w=10$	$w=20$
--10	82.241	85.022	88.442	92.584	97.557
10	67.241	69.858	73.252	77.549	82.915
20	58.850	61.341	64.743	69.214	74.987
25	53.638	56.048	59.478	64.174	70.367
30	50.326	52.667	56.161	61.083	67.771
35	48.317	50.607	54.206	59.389	66.698
40	47.331	49.582	53.289	58.842	66.879
45	47.258	49.484	53.347	59.348	68.290
50	48.119	50.288	54.386	60.961	71.097
55	50.035	52.181	56.575	64.015	75.496
60	53.465	55.525	60.423	68.819	82.458
65	59.164	61.121	66.178	76.804	93.710
70	69.047	70.784	77.324	89.973	113.175

To do this you need to understand and make use of the Matlab root-finder fzero. A simple example tells all. Suppose

```
function z = MyF(x,a)
z = a*x^2 - 20;
```

is available. We know that if $a=2$ then this function has a single root in the interval [3,4]. The following script assigns the root to r :

```
a = 2;
L = 3;
R = 4;
Bracketing_Interval = [L,R]; % Contains the root of interest
r = fzero(@(x) MyF(x,a),Bracketing_Interval)
```

Now here is what you do to compute the "magic v_{0}, i.e., the initial velocity so that when the cannonball lands, $x\left(t_{\text {final }}\right)=x_{\text {final }}=d$. Suppose $\mathrm{F}(\mathrm{v} 0$, theta, $\mathrm{w}, \mathrm{d})$ is a function that runs ode45 with the same terminate-onlanding event function and with initial condition [0; 0 ; theta; v0]. If F returns the value of $x_{\text {final }}-d$, then it evaluates to zero precisely when v_{0} is the required initial velocity, i.e., the initial velocity that causes the terminating value of x to be d. Thus, to produce Cannon_d (d) you need to adjust Cannon_v0 so that (a) it includes the subfunction F just described and (b) it replaces the function $d=$ HowFar (theta, w, v0) with a function v0 $=$ HowFast (theta, w, d) that returns the required initial velocity. HowFast is essentially a one-liner that calls fzero. Think a little bit about the required bracketing interval that you pass to fzero. The smaller the interval the fewer the number of F -calls and that means a reduced number of f-evaluations overall. Include comments on how you pick the bracketing interval. Note: fzero is unhappy if there is no root in the bracketing interval. You may assume that the incoming d satisfies $10 \leq d \leq 500$. Submit Cannon_d to CMS.

