
CS4210 Assignment 4 Due: 10/17/14 (Fri) at 6pm
You must work either on your own or with one partner. You may discuss background issues and general solution

strategies with others, but the solutions you submit must be the work of just you (and your partner). If you work with

a partner, you and your partner must first register as a group in CMS and then submit your work as a group. Points

may be deducted for poor style and reckless inefficiency.

Topics: Fast Trigonometric interpolation,numerical integration

1 Fast Trigonometric interpolation

In this problem you will use the FFT to compute vectors a ∈ IRm+1 and b ∈ IRm−1 so that if y ∈ IR2m is given,
then

yk =
a0

2
+

m−1
∑

j=1

(

aj cos

(

kjπ

m

)

+ bj sin

(

kjπ

m

))

+
(−1)k

2
am k = 0:2m− 1 (1)

The lecture codes for September 25 present a “slow” way for doing this. (The notation is slightly different and
a0 and am are different by a factor of two.)

Consideration of the case m = 3 shows the way. The starting point is to look at the 8x8 DFT matrix F8.
Recall that

[Fn]kj = ωkj
n ωn = cos

(

2π

n

)

− i cos

(

2π

n

)

.

Letting ω = ω8 and using facts like ω15
8 = ω7

8 = ω̄8 = ω̄9 we see that

F8 =

1 1 1 1 1 1 1 1

1 ω ω2 ω3 −1 ω̄3 ω̄2 ω̄

1 ω2 ω4 ω6 1 ω̄6 ω̄4 ω̄2

1 ω3 ω6 ω9 −1 ω̄9 ω̄6 ω̄3

1 ω4 ω8 ω12 1 ω̄12 ω̄8 ω̄4

1 ω5 ω10 ω15 −1 ω̄15 ω̄10 ω̄5

1 ω6 ω12 ω18 1 ω̄18 ω̄12 ω̄6

1 ω7 ω14 ω21 −1 ω̄21 ω̄14 ω̄7

Note that columns 7, 6, and 5 are the conjugate of columns 1, 2, and 3 respectively. (Proof: ωk(n−j) =
ωnkω−kj = ω̄kj.) Using facts like (α + iβ)ω + (α − iβ)ω̄ = 2α·Re(ω) + 2β ·Im(ω) it follows that

F8

a0

a1 + ib1

a2 + ib2

a3 + ib3

a4

a3 − ib3

a2 − ib2

a1 − ib1

= a0

1

1

1

1

1

1

1

1

+ 2·Re (F8(:, 1:3))

a1

a2

a3

 + a4

1

−1

1

−1

1

−1

1

−1

+ 2·Im (F8(:, 1:3))

b1

b2

b3

 . (2)

The real and imaginary parts of F8(:, 1:3)) are relevant to the computation (1). Indeed, if n = 2m, then

[Fn]kj = ωkj
n =

(

cos

(

2π

n

)

− i sin

(

2π

n

))kj

= cos

(

2kjπ

2m

)

− i sin

(

2kjπ

2n

)

= cos

(

kjπ

m

)

− i sin

(

kjπ

m

)

.

1

It follows from (2) that to solve the n = 8 version of (1) we must compute a ∈ IR5 and b ∈ IR3 so that

y =

y0

y1

y2

y3

y4

y5

y6

y7

=
1

2
F8

a0

a1 + ib1

a2 + ib2

a3 + ib3

a4

a3 − ib3

a2 − ib2

a1 − ib1

.

Thus, if
z = 2F−1

8 y

then a = Re(z(0:4)) and b = Im(z(1:3)). To carry out this linear system solve we use a crucial (but easily
verified) fact about the inverse of the DFT matrix:

F−1
n =

1

n
F̄n.

Use this fact to show how the vectors a and b can be extracted from the DFT of y. Extrapolating from the
n = 8 case, implement the following function:

function [a,b] = TrigInterp(y)

% y is a column n vector and n is a power of 2.

% a is a column m+1 vector and b is a column m-1 vector where m = n/2 so that if

%

% f(t) = a(1)cos(0*t) + a(2)cos(t) + a(3)cos(2t) + ... + a(m+1)cos(mt) +...

% b(1)sin(t) + b(2)sin(2t) + b(3)sin(3t) + ... + b(m-1)sin((m-1)t)

% then

% f(2*pi*k/n) = y(k+1), k=0:n-1

%

Make effective use of the Matlab fft function. (To force issues, you cannot use ifft.) Submit your imple-
mentation of TrigInterp to CMS.

2 Periodic Functions and the Composite Simpson Rule

The composite Simpson rule defined by

S(a, b, n) =

n
∑

k=1

h

6

(

f(zk) + 4f

(

zk + zk+1

2

)

+ f(zk+1)

)

where

h =
b − a

n
and z = linspace(a, b, n + 1).

It satisfies
∫ b

a

f(x)dx = S(a, b, n) −
f(4)(η)

2880
h4(b − a)

where a ≤ η ≤ b. Complete the following function so that it performs as specified:

function Q = PeriodicSimpson(f,a,b,P,M4,tol)

% f is a handle to a function f that is defined on [a,b] and whose

% fourth derivative is bounded by M4. f has period P, i.e. f(x+P) = f(x) for all x.

% Q is an estimate of the integral of f from a to b with the property that

% |Exact Integral - Q| <= tol where tol>0.

2

Your implementation must approximate all integrals using the composite Simpson rule. Strive to minimize the
number of f-evaluations. You may assume that f is vectorized. A call of the form f(v) where v is an m-vector
counts as m function evaluations. You will want to exploint periodicity. For example, if b = a + 3P , then

I =

∫ b

a

f(x)dx = 3

∫ a+P

a

f(x)dx

In this case you would approximate I with 3S(a, a+P, n) with the smallest possible n value that guarantees that
the overall error is no larger than tol. It gets more complicated if b is arbitrary!. Submit PeriodicSimpson

to CMS.

3 A Tough Integral

It turns out that

limε→0

∫ 1

ε

1

x
· cos

(

ln(x)

x

)

dx = .3233674316...

Write a script ToughProb that confirms this result. Make effective use of Matlab’s quadrature software. Call
your script ToughProb and submit it to CMS. Be sure to explain the logic of your solution approach in the
comments.

4 Position via Acceleration Snapshots

Let a(t) denote the acceleration of an object at time t. If v0 is the object’s velocity at t = 0, then the velocity
at time t is prescribed by

v(t) = v0 +

∫ t

0

a(τ)dτ.

Likewise, if x0 is the position at t = 0, then the position at time t is given by

x(t) = x0 +

∫ t

0

v(τ)dτ.

Now suppose that we have snapshots a(ti) of the acceleration at times ti, i = 1:m, t1 = 0. Assume that we
know the initial position x0 and velocity v0. Our goal is to estimate position from this data. Spline quadrature
will be used to approximate the preceding integrals. Let Sa(t) be the not-a-knot spline interpolant of the
acceleration data (ti, a(ti)), i = 1:m, and define

ṽ(t) = v0 +

∫ t

0

Sa(τ)dτ.

Let Sv(t) be the not-a-knot spline interpolant of the data (ti, ṽ(ti)), i = 1:m, and define

x̃(t) = x0 +

∫ t

0

Sv(τ)dτ.

The spline interpolant Sx(t) of the data (ti, x̃(ti)) is then an approximation of the true position. Write a
function

function Sx = Position(a,t,x0,v0)}

% a and t are column m-vectors with 0 = t(1) < t(2) <...< t(m).

% a(i) is the acceleration of an object at time t(i)

% x0 and v0 are the position and velocity of the object time 0.

% Sx the pp-representation of a spline that approximates position.

Submit Positionto CMS. It must make effective use of the Matlab spline function. A test script will be
provided.

3

