CS4210 Assignment 2 Due: 9/19/14 (Fri) at 6pm

You must work either on your own or with one partner. You may discuss background issues and general solution strategies with others, but the solutions you submit must be the work of just you (and your partner). If you work with a partner, you and your partner must first register as a group in CMS and then submit your work as a group. Each problem is worth 5 points. One point may be deducted for poor style.

Topics: Polynomial interpolation

1 A Quintic Polynomial Interpolation Problem

Ordinarily, we could interpolate the six points $\left(d_{1}, y_{1}\right), \ldots,\left(d_{6}, y_{6}\right)$ with the quintic polynomial

$$
p(d)=a_{1}+a_{2} d+a_{3} d^{2}+a_{4} d^{3}+a_{5} d^{4}+a_{6} d^{5}
$$

(See lecture code InterpV.) In this problem you solve a variant of this problem. In particular, you are to implement the following function:

```
    function a = Quintic(d,y)
% d is a column 4-vector with d(1) < d(2) < d(3) < d(4)
% y is a column 4-vector
% a is a column 6-vector with the property that if
%
% p(d) = a(1) +a(2)d + a(3)d^2 +a(4)d^3 +a(5)d^4 +a(6)d^5
%
% then p(d(i)) = y(i) (i=1:4), p'(d(1)) = p'(d(4)), and p"(d(1)) = p"(d(4)).
```

In other words, the quintic interpolates at four points and the two extra degrees of freedom are used to ensure that the slopes at the endpoints match and that the second derivatives at the endpoints match. Submit Quintic to CMS. A test script P1 is available.

2 Odometer-Based Interpolation

Suppose we are given three distinct points in the plane $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right),\left(u_{3}, v_{3}\right)$ and define the following "odometer" values:

$$
\begin{aligned}
d_{1} & =0 \\
d_{2} & =d_{1}+\sqrt{\left(u_{2}-u_{1}\right)^{2}+\left(v_{2}-v_{1}\right)^{2}} \\
d_{3} & =d_{2}+\sqrt{\left(u_{3}-u_{2}\right)^{2}+\left(v_{3}-v_{2}\right)^{2}} \\
d_{4} & =d_{3}+\sqrt{\left(u_{1}-u_{3}\right)^{2}+\left(v_{1}-v_{3}\right)^{2}}
\end{aligned}
$$

(Picture yourself driving around the triangle defined by the three points, looking at the odometer every time you pass through a vertex.) We wish to construct a closed curve $\left(p_{x}(d), p_{y}(d)\right)$ that passes through the three points and is smooth, e.g.,

Here are the rules:

- $p_{x}(d)$ and $p_{y}(d)$ are quintic polynomials in d.
- $\left(p_{x}\left(d_{1}\right), p_{y}\left(d_{1}\right)\right)=\left(u_{1}, v_{1}\right)$
- $\left(p_{x}\left(d_{2}\right), p_{y}\left(d_{2}\right)\right)=\left(u_{2}, v_{2}\right)$
- $\left(p_{x}\left(d_{3}\right), p_{y}\left(d_{3}\right)\right)=\left(u_{3}, v_{3}\right)$
- $\left(p_{x}\left(d_{4}\right), p_{y}\left(d_{4}\right)\right)=\left(u_{1}, v_{1}\right)$
- $p_{x}^{\prime}\left(d_{1}\right)=p_{x}^{\prime}\left(d_{4}\right)$ and $p_{x} "\left(d_{1}\right)=p_{x} "\left(d_{4}\right)$
- $p_{y}^{\prime}\left(d_{1}\right)=p_{y}^{\prime}\left(d_{4}\right)$ and $p_{y} "\left(d_{1}\right)=p_{y} "\left(d_{4}\right)$

The last four conditions ensure that everything is smooth through the second derivative when we "drive through" the first vertex $\left(u_{1}, v_{1}\right)$. Implement a function

```
function [ax,ay] = QuinticCurve(u,v)
```

The inputs u and v should be column 3 -vectors that specify the three points. The coefficients of the fitting quintics should be returned in ax and ay:

$$
\begin{aligned}
& p_{x}(d)=a x_{1}+a x_{2} d+a x_{3} d^{2}+a x_{4} d^{3}+a x_{5} d^{4}+a x_{6} d^{5} \\
& p_{y}(d)=a y_{1}+a y_{2} d+a y_{3} d^{2}+a y_{4} d^{3}+a y_{5} d^{4}+a y_{6} d^{5}
\end{aligned}
$$

A six-by-six linear system is involved and you may use the \backslash operator. Your implementation should also display the three points (highlighting $\left(u_{1}, v_{1}\right)$ in red) and the interpolating curve. Use axis equal off. Submit QuinticCurve to CMS. A test script P2 is provided.

3 Evaluating Cubics via Differences

Refer to page 17 in CVL Chapter 2 where "differences" are discussed. We change the notation a bit for simplicity. We are given a function $f(x)$ and points $x_{i}=x_{1}+(i-1) h$, let $f_{i}=f\left(x_{i}\right)$. The k-th order difference of f at x_{1}, \ldots, x_{k} is defined by

$$
f\left\{x_{i}, \ldots, x_{i+k}\right\}= \begin{cases}f_{i} & \text { if } k=0 \\ f\left\{x_{i+1}, \ldots, x_{i+k}\right\}-f\left\{x_{i}, \ldots, x_{i+k-1}\right\} & \text { if } k>1\end{cases}
$$

For example,
\(\left.\begin{array}{l|l|l|l|l}0th \& 1 st \& 2 nd \& 3rd

Order\end{array}\right) ~\)| 4 th |
| :--- |
| Order |

Suppose f is a cubic. Since a k-th order difference is a multiple of a k-th order divided difference, and since a k th order divided difference is "secretly" a k-th order derivative, it follows that all the 4 th order differences will be zero. Let's take a look at the above difference array with the example $f(x)=2 x^{3}-x^{2}+x-3$ with $x_{i}=i$:

$\mathrm{f}(1)=$	-1				
$\mathrm{f}(2)=$	11	12			
$\mathrm{f}(3)=$	45	34	22		
$\mathrm{f}(4)=$	113	68	34	12	
$\mathrm{f}(5)=$	227	114	46	12	0
$\mathrm{f}(6)=$	399	172	58	12	0

Notice that the 3 rd order differences are constant. This gives us a very fast way to figure out $f(7)$. At the start we have

$\mathrm{f}(1)=$	-1				
$\mathrm{f}(2)=$	11	12			
$\mathrm{f}(3)=$	45	34	22		
$\mathrm{f}(4)=$	113	68	34	12	
$\mathrm{f}(5)=$	227	114	46	12	0
$\mathrm{f}(6)=$	399	172	58	12	0
$\mathrm{f}(7)=$	$?$	$? ?$	$? ? ?$	12	0

Since ???-58 = 12 we have

$\mathrm{f}(1)=$	-1				
$\mathrm{f}(2)=$	11	12			
$\mathrm{f}(3)=$	45	34	22		
$\mathrm{f}(4)=$	113	68	34	12	
$\mathrm{f}(5)=$	227	114	46	12	0
$\mathrm{f}(6)=$	399	172	58	12	0
$\mathrm{f}(7)=$	$?$	$? ?$	70	12	0

Since ?? - $172=70$ we have

$\mathrm{f}(1)=$	-1				
$\mathrm{f}(2)=$	11	12			
$\mathrm{f}(3)=$	45	34	22		
$\mathrm{f}(4)=$	113	68	34	12	
$\mathrm{f}(5)=$	227	114	46	12	0
$\mathrm{f}(6)=$	399	172	58	12	0
$\mathrm{f}(7)=$	$?$	242	60	12	0

Since ? - $399=242$ we have

$\mathrm{f}(1)=$	-1				
$\mathrm{f}(2)=$	11	12			
$\mathrm{f}(3)=$	45	34	22		
$\mathrm{f}(4)=$	113	68	34	12	
$\mathrm{f}(5)=$	227	114	46	12	0
$\mathrm{f}(6)=$	399	172	58	12	0
$\mathrm{f}(7)=$	641	232	60	12	0

It checks out: $f(7)=2 * 7^{3}-7^{2}+7-3=686-49+7-3=641$. Using this very fast evaluation idea, implement the following function

```
    function q = CubicValues(p,n)
% p is a column 4-vector with the property that
% p(1) = c(x0)
% p(2) = c(x0+h)
% p(3) = c(x0+2h)
% p(4) = c(x0+3h)
%
% where c(x) is some cubic polynomial, x0 is real and h>0 is real.
%
% q is a column n-vector ( }\textrm{n}=4=4\mathrm{ ) with the property that
% q(i) = c(x0+(i-1)h), i=1:n
```

Submit CubicValues to CMS. A test script P3 is available.

4 Cubic Hermite Interpolation on a Line Segment

Read about cubic hermite interpolation in CVL §3.2.1 and consider the following implementation:

```
    function [a,b,c,d] = HCubic(xL,yL,sL, xR,yR,sR)
% Cubic Hermite interpolation
% (xL,yL,sL) and (xR,yR,sR) are x-y-slope triplets with xL and xR distinct.
% a,b,c,d are real numbers with the property that if
% p(z) = a + b (z-xL) + c(z-xL)^2 + d(z-xL)^2(z-xR)
% then p(xL)=yL, p'(xL)=sL, p(xR)=yR, p'(xR)=sR.
a = yL; b = sL; delx = xR - xL;
yp = (yR - yL)/delx;
c = (yp - sL)/delx;
d = (sL - 2*yp + sR)/(delx*delx);
```

In this problem you are to use the cubic Hermite interpolation idea to estimate the value of a function $f(x, y)$ at the point

$$
\left(x_{*}, y_{*}\right)=\left(x_{1}+t_{*}\left(x_{2}-x_{1}\right), y_{1}+t_{*}\left(y_{2}-y_{1}\right)\right)
$$

given that you know the value of f and its partial derivatives f_{x} and f_{y} at both $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$. In particular, implement the following function:

```
    function [zStar,fxStar,fyStar] = HConLineSeg(P,F,tStar)
% P is a length-2 cell array of structures that identify 2 distinct points in
% the plane: (P{1}.x,P{1}.y) and (P{2}.x,P{2}.y).
F is a length-2 cell array of structures that encode the value of a
    function f(x,y) at these points together with the value of the }x\mathrm{ and y
    partial derivatives, e.g., F{k}.fvalue, F{k}.fx, and F{k}.fy , k=1:2
tStar is a scalar that satisfies 0<=tStar<=1.
zStar = c(tStar) where c(t) is the piecewise cubic hermite interpolant of
    the function f(P{1}.x+t*(P{2}.x-P{1}.x),P{1}.y+t*(P{2}.y-P{1}.y)) at
    t=0 and t=1.
fxStar and fyStar are estimates of f's partial derivatives in the x and y directions
    at tStar
```

Submit HConLineSeg to CMS. A test script P4 is provided.

5 Hermite Cubic Interpolation on a Triangle

Refer to problem P2.4.6 in CVL which outlines a framework for estimating the value of a function $f(x, y)$ given that its value is known on the vertices. This problem is the same thing except that you also know the value of f 's partial derivatives at each of the vertices. Implement the following function and submit it to CMS.

```
function z = HConTriangle(P,F,alpha)
% P is a length-3 cell array of structures that identify 3 distinct points in
% the plane: (P{1}.x,P{1}.y), (P{2}.x,P{2}.y), and (P{3}.x,P{3}.y).
F is a length-3 cell array of structures that encode the value of a
    function f(x,y) at these points together with the value of the x and y
    partial derivatives, e.g., F{k}.fvalue, F{k}.fx, and F{k}.fy , k=1:3
alpha is a length-3 vector of nonnegative numbers that sum to one.
z is an estimate of f(xtilde,ytilde) where
    xtilde = alpha(1)*P{1}.x + alpha(2)*P{2}.x + alpha(3)*P{3}.x
    ytilde = alpha(1)*P{1}.y + alpha(2)*P{2}.y + alpha(3)*P{3}.y
```

The score on this problem will depend upon the quality of the approximation. A test script P5 is provided.

