1. Let M be an $n \times n$ elementary unit lower triangular matrix, that is, a matrix of the form $I - me_k^T$ where $m \in \mathbb{R}^n$ is a vector whose first k entries are 0’s and e_k is the kth column of the identity matrix. See p. 67 of the text for an example and more explanation. Let $P(i, j)$ be the permutation matrix that exchanges row i with row j, but leaves other rows unchanged. Assume $i > k$ and $j > k$. Show that $P(i, j)M = NP(i, j)$, where N is some other elementary lower triangular matrix. Exactly how is N related to M?

2. Let M be an $n \times n$ elementary unit lower triangular matrix $I - me_k^T$ such that all entries of m have absolute value at most 1. Consider solving $Mx = b$ for x. Show that the absolute values of entries in x are all no more than twice the maximum absolute value in b, i.e.,

$$\max_i |x(i)| \leq 2 \max_i |b(i)|.$$

3. In lecture, a Matlab fragment for GEPP was provided that computes an array p to store information about the row exchanges. Write (on paper) a Matlab fragment that takes as input the array p and produces as output the $n \times n$ corresponding permutation matrix P.

4. Show that the product of two $n \times n$ lower triangular matrices is itself lower triangular. Provide a Matlab fragment for multiplying two $n \times n$ lower triangular matrices that avoids unnecessary operations on zeros. The innermost loop should be vectorized. Analyze the number of flops required by your fragment, accurate to the leading term.