1. Let \(L_1 \) and \(L_2 \) be two lines in \(\mathbb{R}^n \). Assume that \(L_1 \) is written in “parametric form” as
\[
L_1 = \{ \mathbf{v}_1 + t_1 \mathbf{w}_1 : t_1 \in \mathbb{R} \}
\]
where \(\mathbf{v}_1, \mathbf{w}_1 \) are given, and assume \(L_2 \) has the analogous form. Assume further that the lines are not parallel, i.e., \(\mathbf{w}_1, \mathbf{w}_2 \) are linearly independent. Consider the problem of finding the closest pair of points on \(L_1 \) and \(L_2 \). Show that this is a least-squares problem, and develop an algorithm for solving it.

2. Suppose that \(A \in \mathbb{R}^{m \times n} \) has rank \(n \). The orthogonal projection onto the rangespace of \(A \) is defined to be the matrix
\[
P = A(A^TA)^{-1}A^T.
\]
(a) Suppose \(A \) is factored as \(QR \). Write a formula for \(P \) in terms of \(Q \) and \(R \). By simplifying the formula, show that \(R \) is unneeded, and that \(P \) can be written in terms of \(Q \) alone.

(b) Given the factorization \(A = QR \) where \(Q \) is represented implicitly as a product of Householder reflections, propose an algorithm to compute \(A(A^TA)^{-1}A^T \mathbf{x} \) for an arbitrary vector \(\mathbf{x} \) using the Householder reflections (i.e., without explicitly forming \(Q \)). How many flops are required for your algorithm, accurate to the leading term (not counting the flops for factorization)?

3. Let \(A \) be a square nonsingular matrix QR-factored as \(A = QR \). Prove that
\[
\|Q\|_F \cdot \|R\|_F
\]
is not much larger than \(\|A\|_F \).

4. Implement classical Gram-Schmidt for solving least-squares problems. Use BLAS level 2 where possible. Compare it to the method of normal equations. For these experiments, assume that Matlab’s built-in least-squares solver (i.e., the backslash operator) returns the “exact answer.” How do CGS and normal equations compare in terms of accuracy?

Try all three algorithms for randomly-generated problems of size \(60 \times 40 \) for varying condition numbers, where the condition number varies from 1 to \(10^{16} \). In class it will be explained how to generate a random matrix with known condition number.

Hand in: listings of all m-files, sample runs (if relevant) and at least one interesting plot showing how the errors in the CGS versus normal equations behave as the condition is varied.