CS 421: Numerical Analysis
Fall 2000
Problem Set 2

Due: Fri., Sep. 29 in lecture.

1. Exercise proposed by T. Coleman: (a) Show that for any \(A \in \mathbb{R}^{n \times n}, \| A \|_2 \leq \| A \|_F. \)
 (b) Find a \(2 \times 2 \) diagonal matrix \(A \) such that \(\| A \|_2 = \| A \|_F. \)

2. Let \(A \) be a symmetric positive semidefinite matrix.
 (a) Show that \(A(1, 1) \) must be nonnegative.
 (b) Show that if \(A(1, 1) = 0 \), then the whole first row and column of \(A \) must be all zeros.
 These two facts play a role in an efficient algorithm for testing whether a matrix is positive semidefinite.

3. Let \(U \) be an \(n \times n \) nonsingular upper triangular matrix. (a) Show that \(\| U^{-1} \|_\infty \geq 1/\min_i |U(i, i)|. \) This fact leads to a simple but not very reliable condition-number estimator (namely, \(\| U^{-1} \|_\infty \approx 1/\min_i |U(i, i)| \)) for upper triangular matrices. (b) In fact, show that this estimator is not reliable by constructing a \(2 \times 2 \) upper triangular matrix \(U \) in which \(\| U^{-1} \|_\infty \geq 10^8/\min_i |U(i, i)|. \)

4. This question requires Matlab programming. Consider two different ways to generate an \(n \times n \) unit lower triangular matrix \(L \) all of whose entries are at most 1 in magnitude. Method 1 is to generate the matrix directly by putting random numbers chosen from the interval \([-1, 1]\) below the diagonal (in Matlab, you need the \texttt{rand} function, the \texttt{triu} function, and the \texttt{eye} function). Method 2 is to generate a square matrix \(A \) at random, compute its \(P^T L U \) factorization (in Matlab, use the \texttt{lu} function), and then save \(L \) (ignore \(P \) and \(U \)).
 For each of these two methods, generate matrices of varying sizes up to \(n = 200. \) For each \(L, \) compute the \(\infty \)-norm of \(L^{-1}. \) Make two plots: one showing \(\| L^{-1} \|_\infty \) versus \(n \) for Method 1, and the other for Method 2. The two plots should behave quite differently, and the reason for this difference is not completely understood.
 Hand in: listings of m-files, sample runs, two plots, and a paragraph of conclusions.