CS421 Problem Set 6 Due: Fri Dec 3/99

1. Let $F(x)$ be a nonlinear vector-valued function with an m-by- n sparse Jacobian matrix $J(x)$. Let W, V be m-by- p and n-by- q known binary matrices, respectively, where p and q are integers. At a given point x assume that the products $J V$ and $W^{T} J$ have both been computed. Assume the sparsity pattern of J is known. In principle how can it be determined if the nonzeroes of J can be directly recovered (i.e., no arithmetic) from this information? Assuming we allow substitutions (but not matrix factorizations) how can it be determined if the nonzeroes of J are recoverable from this given information?
2. A Jordon block, J_{λ}, is a square upper bidiagonal matrix with all diagonal entries equal to a constant λ and with the super-diagonal elements equal to unity. For example the Jordan block of order 4 is:

$$
J_{\lambda}=\left[\begin{array}{llll}
\lambda & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & \lambda & 1 \\
0 & 0 & 0 & \lambda
\end{array}\right] .
$$

Prove that all eigenvectors of J_{λ} are multiples of e_{1}.
3. Suppose that matrix A has n distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Argue that, with the appropriate shifts μ_{k}, shifted inverse iteration can generate eigenvectors corresponding to each of the eigenvalues $\lambda_{k}, k=1, \ldots, n$.
4. Let x_{1}, \ldots, x_{k} be k eigenvectors of A. Suppose Q is an orthogonal matrix, $Q=\left(Q_{1}, Q_{2}\right)$, where $<Q_{1}>=<x_{1}, \ldots, x_{k}>$. Show that $Q_{2}^{T} A Q_{1}=0$.
5. Assume A has eigenvectors x_{1}, \ldots, x_{n}. Let Q be an orthogonal matrix such that

$$
\begin{equation*}
<q_{1}, \ldots, q_{k}>=<x_{1}, \ldots, x_{k}>, \quad k=1: n \tag{1}
\end{equation*}
$$

Show that $Q^{T} A Q$ is upper triangular.
6. Let $B \in \Re_{m \times n}$ and suppose $\operatorname{rank}(B)=n$. Let

$$
B=\left(b_{1}, \ldots, b_{n}\right)=Q\left[\begin{array}{c}
R \tag{2}\\
0
\end{array}\right]
$$

where Q is an orthogonal matrix and R is m-by- m and upper triangular. Prove that

$$
<q_{1}, \ldots, q_{k}>=<b_{1}, \ldots, b_{k}>, k=1: n
$$

where $Q=\left(q_{1}, \ldots, q_{n}\right)$.
7. The $Q R$-method for eigenvalues can be simply expressed: Assign $T_{1} \leftarrow A$, and for $k=1, \ldots$,

- Factor: $T_{k}=Q_{k} R_{k}$
- Multiply: $T_{k+1} \leftarrow R_{k} Q_{k}$

Explain what this does and why it works.
8. Suppose A is a square upper Hessenberg matrix. Show how to define an orthogonal matrix Q such that $R \cdot Q$ is upper-Hessenberg, where $A=Q R$, R is upper triangular. In the context of determining eigenvalues, why is this important?
9. Suppose A is real and symmetric. Show how to define an orthogonal matrix Q such that $Q^{T} A Q$ is tridiagonal. In the context of determining eigenvalues, why is this important? This method appears attractive for sparse computations in that if A is sparse then both the original matrix and the result, $Q^{T} A Q$, are sparse matrices. Explain why this approach is actually not generally attractive in the large sparse setting.
10. Let $A \in \Re^{m \times n}$. Show how to compute orthogonal matrices U, V such that $U^{T} A V$ is upper bidiagonal.

