CS 421 - Problem Set 3

Due: Friday, October 15, 1999

1. Let A be an m-by- n matrix. Write a Matlab program, without using the Matlab "norm" function, to compute both $\|A\|_{1}$ and $\|A\|_{\infty}$. Test your program on a few examples comparing your answer to that provided by the appropriate versions of the Matlab "norm" function.
2. Illustrate an effective envelope Cholesky factorization algorithm (you do not have to implement it in Matlab).
3. (a) Write an efficient Matlab program to compute the Cholesky factor of a banded symmetric positive definite matrix A :

$$
\text { function }[\mathrm{BL}]=\operatorname{bchol}(\mathrm{BA}) .
$$

The entries of the lower half of the banded symmetric positive definite matrix A, with bandwidth β, should be stored in the $(\beta+1)$-by- n array $B A$ (A is never explicitly computed or stored.) The $(\beta+1)$-by- n array $B L$ contains the nonzero entries of the Cholesky factor of A.
(b) Either modify your triangular solve routines from the previous assignment, or write new routines, to solve

$$
L y=b, \quad L^{T} x=y
$$

where L is the banded Cholesky factor stored in $B L$. The full matrix L should never be explicitly computed or stored.
(c) Test you programs on different systems $A x=b: \beta=0,1,3,5,8,10, n$ and $n=20,25$ (14 test problems in total). You can generate suitable test problems in reverse: first use "rand" to generate $B L$ and b and then compute $B A$ (a program must be written). Then, to solve $A x=b$ use bchol to obtain $B L$, followed by your triangular solves. In each case compute the relative residual, $\frac{\|A x-b\|}{\|A\| \cdot\|x\|}$, where x is the computed solution. You may assume that $\|A\|=1$. How many flops does the factorization part of your algorithm require? (I am interested in the high-order term, including the coefficient.)
4. (a) Let r be a known scalar and $s \neq 0$ a known vector in \Re^{n}. What is a solution to the problem

$$
\min _{v}\left\{\|v\|_{2}: v^{T} s=r\right\} ?
$$

[Hint: Any vector v can be written, $v=\alpha s+w$ where α is a scalar and $s^{T} w=0$.]
(b) Using part (a), justify the Broyden (or secant) update which solves the problem $\min _{E}\left\{\|E\|_{F}: E s=r\right\}$ for known vectors s and r.

