## CS 421 Problem Set 1 Due: Wed Sep 15/99

1. Let $A$ and $B$ be square matrices of order $n$. Six different ways to compute $C=A * B$ are obtained by considering the different orderings of a triplynested "for-loop", each with the single executable statement

$$
C(i, j)=C(i, j)+A(i, k) * B(k, j)
$$

What is this triply-nested for-loop? Which ordering(s) of the for-loops correspond to a row-by-row computation of $C$ ? Which ordering(s) correspond to a column-by-column computation of $C$ ? How can you describe the computation of $C$ given by the remaining orderings? How many flops are required by the different algorithms?
2. Let $x$ and $y$ be $2 n$-vectors and define $A$ to be the matrix such that $A(i, j)=x(i) * y(j), i, j=1: n$. Given that the vectors $x$ and $y$ are on hand, show that it is possible to compute the vector $w=A v$ in $3 n$ flops where $v$ is a given $n$-vector.
3. Let $T$ be a triangular matrix of order $n$. Show that if $T(i, i) \neq 0, i=1: n$ then $T$ has rank $n$. Show that if $T(j, j)=0$, for some $j$, then $\operatorname{rank}(T)<n$.
4. Let $A$ be a square matrix of order $n$. Give a constructive argument to show that there exist a permutation matrix $P$, a unit lower-triangular matrix $L$, and an upper-triangular matrix $U$ such that

$$
P A=L U
$$

Is it true that $A$ is nonsingular if and only if $U$ is nonsingular? Explain.
5. A sparse matrix is a matrix with many zeros. Often a sparse matrix is represented compactly. For example, the nonzeros of a sparse matrix may be stored as a collection of 3 -tuples, $\left(i, j\right.$, value $\left._{i j}\right)$, where $A(i, j)=v a l u e_{i j} \neq 0$. The zeros are not stored; the number of 3 -tuples is equal to the number of nonzeroes in the matrix.

Describe an algorithm for computing $A * x$, where $A$ is a sparse matrix represented using the 3 -tuple data structure and $x$ is a given (dense) $n$ vector. What is the complexity of computing $A * x$ (i.e., the number of flops) in terms of $n, r_{i}, c_{j}$ where $r_{i}$ is the number of nonzeroes in row $i$, $i=1: n$, and $c_{j}$ is the number of nonzeroes in column $j, j=1: n$.
6. (a) Let $H$ be a real symmetric matrix of order $n$ and let $A$ be $m$-by- $n$ with $\operatorname{rank}(A)=m$. Assume $m \ll n$. Define

$$
M=\left[\begin{array}{cc}
H & A^{T} \\
A & W
\end{array}\right] .
$$

Assume $W$ is real and symmetric and $M$ is positive definite. If $H=L L^{T}$ is precomputed, i.e., on tap, how can a system $M x=b$ be solved in $O\left(n^{2}\right)$ flops? Matrix $L$ is lower triangular and nonsingular.
(b) Experiment with your technique (in MATLAB) on different sized systems. Compare flop counts, and execution times, to the counts/times obtained using $x=M \backslash b$. (Compare solutions to verify that your technique is valid.) In addition, plot observed execution time for your technique versus $n^{2}$. Observations? Explain any results that appear to be inconsistent with the theory.
7. Suppose we wish to compute the solution to the square (nonsingular) linear system, $\left(H+A^{T} W^{-1} A\right) z=r$, where $H$ is symmetric ( $n$-by- $n$ ), $W$ is symmetric, nonsingular, and $A$ is $m$-by- $n$ with $\operatorname{rank}(A)=m$. Propose a direct method to solve for $z$ that does not require the explicit formulation of $\left(H+A^{T} W^{-1} A\right), A^{T} W^{-1} A$, or even $W^{-1}$. Suggest why your method might be advantageous.

