CS 4160
Formal Verification
Prof. Clarkson
Spring 2020
Approaches to validation

- Social
 - Code reviews
 - Extreme/Pair programming

- Methodological
 - Design patterns
 - Test-driven development
 - Version control
 - Bug tracking

- Technological
 - Static analysis ("lint" tools, FindBugs, ...)
 - Fuzzers

- Mathematical
 - Sound type systems
 - "Formal" verification

Less formal: Techniques may miss problems in programs

All of these methods should be used!

Even the most formal can still have holes:
- did you prove the right thing?
- do your assumptions match reality?

More formal: eliminate with certainty as many problems as possible.
Verification

• In the 1970s, scaled to about tens of LOC

• Now, research projects scale to real software:
 – CompCert: verified C compiler
 – seL4: verified microkernel OS
 – Ynot: verified DBMS, web services
 – Four color theorem
 – Project Everest: verified HTTPS stack [in progress]
 – Etc.

• In another 40 years?
Automated theorem provers
Automated theorem provers

- **Z3**: Microsoft started shipping with device driver developer's kit in Windows 7

- **ACL2**: used to verify AMD chip compliance with IEEE floating-point specification, as well as parts of the Java virtual machine
Proof assistant
Proof assistants

• **NuPRL** [Prof. Constable]: Formalization of mathematics, distributed protocols, security

• **Coq**: CompCert, Ynot [Dean Morrisett]
Coq

• 1984: Coquand and Huet implement Coq based on calculus of inductive constructions
• 1992: Coq ported to Caml
• Now implemented in OCaml

Thierry Coquand
1961 –
Coq for program verification

Coq program

Coq theorem

guidance with tactics

Verified OCaml program

Proof of theorem
Coq's full system
Subset of Coq we'll use
CAUTION: HIGHLY ADDICTIVE
LOGISTICS
Prof. Michael Clarkson

- PhD 2010 Cornell University
- BS (CS) & BM (piano) 1999 Miami University
- Regularly teach: CS 2110, CS 3110

- Ugrad senior project: verification of some Space Shuttle specs with NASA/JPL
- PhD dissertation: verified in Isabelle/HOL
- [Hirsch and Clarkson, CCS 2013]: verified in Coq
Course website

https://www.cs.cornell.edu/courses/cs4160/2020sp/
Acknowledgment

CS 4160 is based on the online textbook *Software Foundations* and especially on the work of Prof. Benjamin C. Pierce at the University of Pennsylvania and Prof. Andrew Appel at Princeton University in courses they teach.