ReferencesTyping Mutable References

Most real languages include impure features ("computational effects")...
  • mutable pointer structures
  • non-local control constructs (exceptions, continuations, etc.)
  • process synchronization and communication
  • etc.
Goal for this chapter: formalize pointers.

Definitions

In most real-world programming languages, the mechanisms of name binding and storage allocation are intentionally confused: every name refers to a mutable piece of storage.
Conceptually, it's cleaner to separate the two:
  • keep the mechanisms for name binding (abstraction, let) the same;
  • introduce new, explicit operations for allocating, changing, and looking up the contents of references (pointers).

Syntax

In this chapter, we study adding mutable references to the simply-typed lambda calculus with natural numbers.

Module STLCRef.
The basic operations on references are allocation, dereferencing, and assignment.
  • To allocate a reference, we use the ref operator, providing an initial value for the new cell. For example, ref 5 creates a new cell containing the value 5, and reduces to a reference to that cell.
  • To read the current value of this cell, we use the dereferencing operator !; for example, !(ref 5) reduces to 5.
  • To change the value stored in a cell, we use the assignment operator. If r is a reference, r := 7 will store the value 7 in the cell referenced by r.

Types

If T is a type, then Ref T is the type of references to cells holding values of type T.
      T ::= Nat
          | Unit
          | TT
          | Ref T

Inductive ty : Type :=
  | Nat : ty
  | Unit : ty
  | Arrow : tytyty
  | Ref : tyty.

Terms

Besides variables, abstractions, applications, natural-number-related terms, and unit, we need four more sorts of terms in order to handle mutable references:
      t ::= ...              Terms
          | ref t              allocation
          | !t                 dereference
          | t := t             assignment
          | l                  location

Inductive tm : Type :=
  (* STLC with numbers: *)
  | var : stringtm
  | app : tmtmtm
  | abs : stringtytmtm
  | const : nattm
  | scc : tmtm
  | prd : tmtm
  | mlt : tmtmtm
  | test0 : tmtmtmtm
  (* New terms: *)
  | unit : tm
  | ref : tmtm
  | deref : tmtm
  | assign : tmtmtm
  | loc : nattm.

Typing (Preview)

Informally, the typing rules for allocation, dereferencing, and assignment will look like this:
Gamma ⊢ t1 : T1 (T_Ref)  

Gamma ⊢ ref t1 : Ref T1
Gamma ⊢ t1 : Ref T11 (T_Deref)  

Gamma ⊢ !t1 : T11
Gamma ⊢ t1 : Ref T11
Gamma ⊢ t2 : T11 (T_Assign)  

Gamma ⊢ t1 := t2 : Unit
The rule for locations will require a bit more machinery, and this will motivate some changes to the other rules; we'll come back to this later.

Values and Substitution

Besides abstractions and numbers, we have two new types of values: the unit value, and locations.

Inductive value : tmProp :=
  | v_abs : x T t,
      value (abs x T t)
  | v_nat : n,
      value (const n)
  | v_unit :
      value unit
  | v_loc : l,
      value (loc l).

Hint Constructors value.
Extending substitution to handle the new syntax of terms is straightforward.

Fixpoint subst (x:string) (s:tm) (t:tm) : tm :=
  match t with
  | var x'
      if eqb_string x x' then s else t
  | app t1 t2
      app (subst x s t1) (subst x s t2)
  | abs x' T t1
      if eqb_string x x' then t else abs x' T (subst x s t1)
  | const n
      t
  | scc t1
      scc (subst x s t1)
  | prd t1
      prd (subst x s t1)
  | mlt t1 t2
      mlt (subst x s t1) (subst x s t2)
  | test0 t1 t2 t3
      test0 (subst x s t1) (subst x s t2) (subst x s t3)
  | unit
      t
  | ref t1
      ref (subst x s t1)
  | deref t1
      deref (subst x s t1)
  | assign t1 t2
      assign (subst x s t1) (subst x s t2)
  | loc _
      t
  end.

Notation "'[' x ':=' s ']' t" := (subst x s t) (at level 20).

Pragmatics

Side Effects and Sequencing

We can write
       r:=succ(!r); !r
as an abbreviation for
       (\x:Unit. !r) (r := succ(!r)).

Definition tseq t1 t2 :=
  app (abs "x" Unit t2) t1.

References and Aliasing

It is important to bear in mind the difference between the reference that is bound to some variable r and the cell in the store that is pointed to by this reference.
If we make a copy of r, for example by binding its value to another variable s, what gets copied is only the reference, not the contents of the cell itself.
For example, after reducing
      let r = ref 5 in
      let s = r in
      s := 82;
      (!r)+1
the cell referenced by r will contain the value 82, while the result of the whole expression will be 83. The references r and s are said to be aliases for the same cell.
The possibility of aliasing can make programs with references quite tricky to reason about. For example, the expression
      r := 5; r := !s
assigns 5 to r and then immediately overwrites it with s's current value; this has exactly the same effect as the single assignment
      r := !s
unless we happen to do it in a context where r and s are aliases for the same cell!

Shared State

Of course, aliasing is also a large part of what makes references useful. In particular, it allows us to set up "implicit communication channels" -- shared state -- between different parts of a program. For example, suppose we define a reference cell and two functions that manipulate its contents:
      let c = ref 0 in
      let incc = \_:Unit. (c := succ (!c); !c) in
      let decc = \_:Unit. (c := pred (!c); !c) in
      ...
The Unit-abstractions ("thunks") are used to prevent reduction until later.

Objects

We can go a step further and write a function that creates c, incc, and decc, packages incc and decc together into a record, and returns this record:
      newcounter =
          \_:Unit.
             let c = ref 0 in
             let incc = \_:Unit. (c := succ (!c); !c) in
             let decc = \_:Unit. (c := pred (!c); !c) in
             {i=incc, d=decc}
Now, each time we call newcounter, we get a new record of functions that share access to the same storage cell c. The caller of newcounter can't get at this storage cell directly, but can affect it indirectly by calling the two functions. In other words, we've created a simple form of object.
      let c1 = newcounter unit in
      let c2 = newcounter unit in
      // Note that we've allocated two separate storage cells now!
      let r1 = c1.i unit in
      let r2 = c2.i unit in
      r2  // yields 1, not 2!

References to Compound Types

A reference cell need not contain just a number: the primitives we've defined above allow us to create references to values of any type, including functions. For example, we can use references to functions to give an (inefficient) implementation of arrays of numbers, as follows. Write NatArray for the type Ref (NatNat).
Recall the equal function from the MoreStlc chapter:
      equal =
        fix
          (\eq:Nat->Nat->Bool.
             \m:Nat. \n:Nat.
               if m=0 then iszero n
               else if n=0 then false
               else eq (pred m) (pred n))
To build a new array, we allocate a reference cell and fill it with a function that, when given an index, always returns 0.
      newarray = \_:Unit. ref (\n:Nat.0)
To look up an element of an array, we simply apply the function to the desired index.
      lookup = \a:NatArray. \n:Nat. (!a) n
The interesting part of the encoding is the update function. It takes an array, an index, and a new value to be stored at that index, and does its job by creating (and storing in the reference) a new function that, when it is asked for the value at this very index, returns the new value that was given to update, while on all other indices it passes the lookup to the function that was previously stored in the reference.
      update = \a:NatArray. \m:Nat. \v:Nat.
                   let oldf = !a in
                   a := (\n:Nat. if equal m n then v else oldf n);
References to values containing other references can also be very useful, allowing us to define data structures such as mutable lists and trees.

Null References

One more difference between our references and C-style mutable variables: null pointers
  • in C, a pointer variable can contain either a valid pointer into the heap or the special value NULL
  • source of many errors and much tricky reasoning
    • (any pointer may potentially be "not there")
    • but occasionally useful
  • easy to implement here using references plus options (which can be built out of disjoint sum types)
                Option T       =  Unit + T
                NullableRef T  =  Option (Ref T)
    

Garbage Collection

A last issue that we should mention before we move on with formalizing references is storage de-allocation. We have not provided any primitives for freeing reference cells when they are no longer needed. Instead, like many modern languages (including ML and Java) we rely on the run-time system to perform garbage collection, automatically identifying and reusing cells that can no longer be reached by the program.
This is not just a question of taste in language design: it is extremely difficult to achieve type safety in the presence of an explicit deallocation operation. One reason for this is the familiar dangling reference problem: we allocate a cell holding a number, save a reference to it in some data structure, use it for a while, then deallocate it and allocate a new cell holding a boolean, possibly reusing the same storage. Now we can have two names for the same storage cell -- one with type Ref Nat and the other with type Ref Bool.

Exercise: 2 stars, standard (type_safety_violation)

Show how this can lead to a violation of type safety.

(* FILL IN HERE *)

Operational Semantics

Locations

A reference names a location in the store (also known as the heap or just the memory).
What is the store?
  • Concretely: An array of 8-bit bytes, indexed by 32-bit integers.
  • More abstractly: a list (or array) of values
  • Even more abstractly: a partial function from locations to values.
We'll choose the middle way here: A store is a list of values, and a location is a natural number index into this list.

Stores

A store is just a list of values. (This more concrete representation will be more convenient for proofs than the functional representation we used in IMP.)

Definition store := list tm.
We use store_lookup n st to retrieve the value of the reference cell at location n in the store st. Note that we must give a default value to nth in case we try looking up an index which is too large. (In fact, we will never actually do this, but proving that we don't will require a bit of work.)

Definition store_lookup (n:nat) (st:store) :=
  nth n st unit.
To update the store, we use the replace function, which replaces the contents of a cell at a particular index.

Fixpoint replace {A:Type} (n:nat) (x:A) (l:list A) : list A :=
  match l with
  | nilnil
  | h :: t
    match n with
    | Ox :: t
    | S n'h :: replace n' x t
    end
  end.

Lemma replace_nil : A n (x:A),
  replace n x nil = nil.
Proof.
  destruct n; auto.
Qed.

Lemma length_replace : A n x (l:list A),
  length (replace n x l) = length l.
Proof with auto.
  intros A n x l. generalize dependent n.
  induction l; intros n.
    destruct n...
    destruct n...
      simpl. rewrite IHl...
Qed.

Lemma lookup_replace_eq : l t st,
  l < length st
  store_lookup l (replace l t st) = t.
Proof with auto.
  intros l t st.
  unfold store_lookup.
  generalize dependent l.
  induction st as [|t' st']; intros l Hlen.
  - (* st =  *)
   inversion Hlen.
  - (* st = t' :: st' *)
    destruct l; simpl...
    apply IHst'. simpl in Hlen. omega.
Qed.

Lemma lookup_replace_neq : l1 l2 t st,
  l1l2
  store_lookup l1 (replace l2 t st) = store_lookup l1 st.
Proof with auto.
  unfold store_lookup.
  induction l1 as [|l1']; intros l2 t st Hneq.
  - (* l1 = 0 *)
    destruct st.
    + (* st =  *) rewrite replace_nil...
    + (* st = _ :: _ *) destruct l2... contradict Hneq...
  - (* l1 = S l1' *)
    destruct st as [|t2 st2].
    + (* st =  *) destruct l2...
    + (* st = t2 :: st2 *)
      destruct l2...
      simpl; apply IHl1'...
Qed.

Reduction

First, we augment existing reduction rules with stores:
value v2 (ST_AppAbs)  

(\a:T.t12) v2 / st --> [a:=v2]t12 / st
t1 / st --> t1' / st' (ST_App1)  

t1 t2 / st --> t1' t2 / st'
value v1     t2 / st --> t2' / st' (ST_App2)  

v1 t2 / st --> v1 t2' / st'
Now we can give the rules for the new constructs:
   (ST_RefValue)  

ref v1 / st --> loc |st| / st,v1
t1 / st --> t1' / st' (ST_Ref)  

ref t1 / st --> ref t1' / st'
l < |st| (ST_DerefLoc)  

!(loc l) / st --> lookup l st / st
t1 / st --> t1' / st' (ST_Deref)  

!t1 / st --> !t1' / st'
l < |st| (ST_Assign)  

loc l := v2 / st --> unit / replace l v2 st
t1 / st --> t1' / st' (ST_Assign1)  

t1 := t2 / st --> t1' := t2 / st'
t2 / st --> t2' / st' (ST_Assign2)  

v1 := t2 / st --> v1 := t2' / st'

Reserved Notation "t1 '/' st1 '-->' t2 '/' st2"
  (at level 40, st1 at level 39, t2 at level 39).

Import ListNotations.

Inductive step : tm × storetm × storeProp :=
  | ST_AppAbs : x T t12 v2 st,
         value v2
         app (abs x T t12) v2 / st --> [x:=v2]t12 / st
  | ST_App1 : t1 t1' t2 st st',
         t1 / st --> t1' / st'
         app t1 t2 / st --> app t1' t2 / st'
  | ST_App2 : v1 t2 t2' st st',
         value v1
         t2 / st --> t2' / st'
         app v1 t2 / st --> app v1 t2'/ st'
  | ST_SuccNat : n st,
         scc (const n) / st --> const (S n) / st
  | ST_Succ : t1 t1' st st',
         t1 / st --> t1' / st'
         scc t1 / st --> scc t1' / st'
  | ST_PredNat : n st,
         prd (const n) / st --> const (pred n) / st
  | ST_Pred : t1 t1' st st',
         t1 / st --> t1' / st'
         prd t1 / st --> prd t1' / st'
  | ST_MultNats : n1 n2 st,
         mlt (const n1) (const n2) / st --> const (mult n1 n2) / st
  | ST_Mult1 : t1 t2 t1' st st',
         t1 / st --> t1' / st'
         mlt t1 t2 / st --> mlt t1' t2 / st'
  | ST_Mult2 : v1 t2 t2' st st',
         value v1
         t2 / st --> t2' / st'
         mlt v1 t2 / st --> mlt v1 t2' / st'
  | ST_If0 : t1 t1' t2 t3 st st',
         t1 / st --> t1' / st'
         test0 t1 t2 t3 / st --> test0 t1' t2 t3 / st'
  | ST_If0_Zero : t2 t3 st,
         test0 (const 0) t2 t3 / st --> t2 / st
  | ST_If0_Nonzero : n t2 t3 st,
         test0 (const (S n)) t2 t3 / st --> t3 / st
  | ST_RefValue : v1 st,
         value v1
         ref v1 / st --> loc (length st) / (st ++ v1::nil)
  | ST_Ref : t1 t1' st st',
         t1 / st --> t1' / st'
         ref t1 / st --> ref t1' / st'
  | ST_DerefLoc : st l,
         l < length st
         deref (loc l) / st --> store_lookup l st / st
  | ST_Deref : t1 t1' st st',
         t1 / st --> t1' / st'
         deref t1 / st --> deref t1' / st'
  | ST_Assign : v2 l st,
         value v2
         l < length st
         assign (loc l) v2 / st --> unit / replace l v2 st
  | ST_Assign1 : t1 t1' t2 st st',
         t1 / st --> t1' / st'
         assign t1 t2 / st --> assign t1' t2 / st'
  | ST_Assign2 : v1 t2 t2' st st',
         value v1
         t2 / st --> t2' / st'
         assign v1 t2 / st --> assign v1 t2' / st'

where "t1 '/' st1 '-->' t2 '/' st2" := (step (t1,st1) (t2,st2)).
One slightly ugly point should be noted here: In the ST_RefValue rule, we extend the state by writing st ++ v1::nil rather than the more natural st ++ [v1]. The reason for this is that the notation we've defined for substitution uses square brackets, which clash with the standard library's notation for lists.

Hint Constructors step.

Definition multistep := (multi step).
Notation "t1 '/' st '-->*' t2 '/' st'" :=
               (multistep (t1,st) (t2,st'))
               (at level 40, st at level 39, t2 at level 39).

Typing

The contexts assigning types to free variables are exactly the same as for the STLC: partial maps from identifiers to types.

Definition context := partial_map ty.

Store typings

Having extended our syntax and reduction rules to accommodate references, our last job is to write down typing rules for the new constructs (and, of course, to check that these rules are sound!). Naturally, the key question is, "What is the type of a location?"
First of all, notice that this question doesn't arise when typechecking terms that programmers actually write. Concrete location constants arise only in terms that are the intermediate results of reduction; they are not in the language that programmers write. So we only need to determine the type of a location when we're in the middle of a reduction sequence, e.g., trying to apply the progress or preservation lemmas. Thus, even though we normally think of typing as a static program property, it makes sense for the typing of locations to depend on the dynamic progress of the program too.
As a first try, note that when we reduce a term containing concrete locations, the type of the result depends on the contents of the store that we start with. For example, if we reduce the term !(loc 1) in the store [unit, unit], the result is unit; if we reduce the same term in the store [unit, \x:Unit.x], the result is \x:Unit.x. With respect to the former store, the location 1 has type Unit, and with respect to the latter it has type UnitUnit. This observation leads us immediately to a first attempt at a typing rule for locations:
Gamma ⊢ lookup l st : T1  

Gamma ⊢ loc l : Ref T1
That is, to find the type of a location l, we look up the current contents of l in the store and calculate the type T1 of the contents. The type of the location is then Ref T1.
Having begun in this way, we need to go a little further to reach a consistent state. In effect, by making the type of a term depend on the store, we have changed the typing relation from a three-place relation (between contexts, terms, and types) to a four-place relation (between contexts, stores, terms, and types). Since the store is, intuitively, part of the context in which we calculate the type of a term, let's write this four-place relation with the store to the left of the turnstile: Gamma; st t : T. Our rule for typing references now has the form
Gamma; st ⊢ lookup l st : T1  

Gamma; st ⊢ loc l : Ref T1
and all the rest of the typing rules in the system are extended similarly with stores. (The other rules do not need to do anything interesting with their stores -- just pass them from premise to conclusion.)
However, this rule will not quite do. For one thing, typechecking is rather inefficient, since calculating the type of a location l involves calculating the type of the current contents v of l. If l appears many times in a term t, we will re-calculate the type of v many times in the course of constructing a typing derivation for t. Worse, if v itself contains locations, then we will have to recalculate their types each time they appear. Worse yet, the proposed typing rule for locations may not allow us to derive anything at all, if the store contains a cycle. For example, there is no finite typing derivation for the location 0 with respect to this store:
   [\x:Nat. (!(loc 1)) x, \x:Nat. (!(loc 0)) x]

Exercise: 2 stars, standard (cyclic_store)

Can you find a term whose reduction will create this particular cyclic store?
These problems arise from the fact that our proposed typing rule for locations requires us to recalculate the type of a location every time we mention it in a term. But this, intuitively, should not be necessary. After all, when a location is first created, we know the type of the initial value that we are storing into it. Suppose we are willing to enforce the invariant that the type of the value contained in a given location never changes; that is, although we may later store other values into this location, those other values will always have the same type as the initial one. In other words, we always have in mind a single, definite type for every location in the store, which is fixed when the location is allocated. Then these intended types can be collected together as a store typing -- a finite function mapping locations to types.
As with the other type systems we've seen, this conservative typing restriction on allowed updates means that we will rule out as ill-typed some programs that could reduce perfectly well without getting stuck.
Just as we did for stores, we will represent a store type simply as a list of types: the type at index i records the type of the values that we expect to be stored in cell i.

Definition store_ty := list ty.
The store_Tlookup function retrieves the type at a particular index.

Definition store_Tlookup (n:nat) (ST:store_ty) :=
  nth n ST Unit.
Suppose we are given a store typing ST describing the store st in which some term t will be reduced. Then we can use ST to calculate the type of the result of t without ever looking directly at st. For example, if ST is [Unit, UnitUnit], then we can immediately infer that !(loc 1) has type UnitUnit. More generally, the typing rule for locations can be reformulated in terms of store typings like this:
l < |ST|  

Gamma; ST ⊢ loc l : Ref (lookup l ST)
That is, as long as l is a valid location, we can compute the type of l just by looking it up in ST. Typing is again a four-place relation, but it is parameterized on a store typing rather than a concrete store. The rest of the typing rules are analogously augmented with store typings.

The Typing Relation

l < |ST| (T_Loc)  

Gamma; ST ⊢ loc l : Ref (lookup l ST)
Gamma; ST ⊢ t1 : T1 (T_Ref)  

Gamma; ST ⊢ ref t1 : Ref T1
Gamma; ST ⊢ t1 : Ref T11 (T_Deref)  

Gamma; ST ⊢ !t1 : T11
Gamma; ST ⊢ t1 : Ref T11
Gamma; ST ⊢ t2 : T11 (T_Assign)  

Gamma; ST ⊢ t1 := t2 : Unit

Reserved Notation "Gamma ';' ST '⊢' t '∈' T" (at level 40).

Inductive has_type : contextstore_tytmtyProp :=
  | T_Var : Gamma ST x T,
      Gamma x = Some T
      Gamma; ST ⊢ (var x) \in T
  | T_Abs : Gamma ST x T11 T12 t12,
      (update Gamma x T11); STt12 \in T12
      Gamma; ST ⊢ (abs x T11 t12) \in (Arrow T11 T12)
  | T_App : T1 T2 Gamma ST t1 t2,
      Gamma; STt1 \in (Arrow T1 T2) →
      Gamma; STt2 \in T1
      Gamma; ST ⊢ (app t1 t2) \in T2
  | T_Nat : Gamma ST n,
      Gamma; ST ⊢ (const n) \in Nat
  | T_Succ : Gamma ST t1,
      Gamma; STt1 \in Nat
      Gamma; ST ⊢ (scc t1) \in Nat
  | T_Pred : Gamma ST t1,
      Gamma; STt1 \in Nat
      Gamma; ST ⊢ (prd t1) \in Nat
  | T_Mult : Gamma ST t1 t2,
      Gamma; STt1 \in Nat
      Gamma; STt2 \in Nat
      Gamma; ST ⊢ (mlt t1 t2) \in Nat
  | T_If0 : Gamma ST t1 t2 t3 T,
      Gamma; STt1 \in Nat
      Gamma; STt2 \in T
      Gamma; STt3 \in T
      Gamma; ST ⊢ (test0 t1 t2 t3) \in T
  | T_Unit : Gamma ST,
      Gamma; STunit \in Unit
  | T_Loc : Gamma ST l,
      l < length ST
      Gamma; ST ⊢ (loc l) \in (Ref (store_Tlookup l ST))
  | T_Ref : Gamma ST t1 T1,
      Gamma; STt1 \in T1
      Gamma; ST ⊢ (ref t1) \in (Ref T1)
  | T_Deref : Gamma ST t1 T11,
      Gamma; STt1 \in (Ref T11) →
      Gamma; ST ⊢ (deref t1) \in T11
  | T_Assign : Gamma ST t1 t2 T11,
      Gamma; STt1 \in (Ref T11) →
      Gamma; STt2 \in T11
      Gamma; ST ⊢ (assign t1 t2) \in Unit

where "Gamma ';' ST '⊢' t '∈' T" := (has_type Gamma ST t T).

Hint Constructors has_type.
Of course, these typing rules will accurately predict the results of reduction only if the concrete store used during reduction actually conforms to the store typing that we assume for purposes of typechecking. This proviso exactly parallels the situation with free variables in the basic STLC: the substitution lemma promises that, if Gamma t : T, then we can replace the free variables in t with values of the types listed in Gamma to obtain a closed term of type T, which, by the type preservation theorem will reduce to a final result of type T if it yields any result at all. We will see below how to formalize an analogous intuition for stores and store typings.
However, for purposes of typechecking the terms that programmers actually write, we do not need to do anything tricky to guess what store typing we should use. Concrete locations arise only in terms that are the intermediate results of reduction; they are not in the language that programmers write. Thus, we can simply typecheck the programmer's terms with respect to the empty store typing. As reduction proceeds and new locations are created, we will always be able to see how to extend the store typing by looking at the type of the initial values being placed in newly allocated cells; this intuition is formalized in the statement of the type preservation theorem below.

Properties

Standard theorems...
  • Progress -- pretty much same as always
  • Preservation -- needs to be stated more carefully!

Well-Typed Stores

Evaulation and typing relations take more parameters now, so at a minumum we have to add these to the statement of preservation...

Theorem preservation_wrong1 : ST T t st t' st',
  empty; STt \in T
  t / st --> t' / st'
  empty; STt' \in T.
Abort.
Obviously wrong: no relation between assumed store typing and provided store!
We need a way of saying "this store satisfies the assumptions of that store typing"...

Definition store_well_typed (ST:store_ty) (st:store) :=
  length ST = length st
  ( l, l < length st
     empty; ST ⊢ (store_lookup l st) \in (store_Tlookup l ST)).
Informally, we will write ST st for store_well_typed ST st.
We can now state something closer to the desired preservation property:

Theorem preservation_wrong2 : ST T t st t' st',
  empty; STt \in T
  t / st --> t' / st'
  store_well_typed ST st
  empty; STt' \in T.
Abort.
This works... for all but one of the reduction rules!

Extending Store Typings

Intuition: Since the store can grow during reduction, we need to let the store typing grow too...

Inductive extends : store_tystore_tyProp :=
  | extends_nil : ST',
      extends ST' nil
  | extends_cons : x ST' ST,
      extends ST' ST
      extends (x::ST') (x::ST).

Hint Constructors extends.
We'll need a few technical lemmas about extended contexts.
First, looking up a type in an extended store typing yields the same result as in the original:

Lemma extends_lookup : l ST ST',
  l < length ST
  extends ST' ST
  store_Tlookup l ST' = store_Tlookup l ST.
Proof with auto.
  intros l ST ST' Hlen H.
  generalize dependent ST'. generalize dependent l.
  induction ST as [|a ST2]; intros l Hlen ST' HST'.
  - (* nil *) inversion Hlen.
  - (* cons *) unfold store_Tlookup in ×.
    destruct ST'.
    + (* ST' = nil *) inversion HST'.
    + (* ST' = a' :: ST'2 *)
      inversion HST'; subst.
      destruct l as [|l'].
      × (* l = 0 *) auto.
      × (* l = S l' *) simpl. apply IHST2...
        simpl in Hlen; omega.
Qed.
Next, if ST' extends ST, the length of ST' is at least that of ST.

Lemma length_extends : l ST ST',
  l < length ST
  extends ST' ST
  l < length ST'.
Proof with eauto.
  intros. generalize dependent l. induction H0; intros l Hlen.
    inversion Hlen.
    simpl in ×.
    destruct l; try omega.
      apply lt_n_S. apply IHextends. omega.
Qed.
Finally, ST ++ T extends ST, and extends is reflexive.

Lemma extends_app : ST T,
  extends (ST ++ T) ST.
Proof with auto.
  induction ST; intros T...
  simpl...
Qed.

Lemma extends_refl : ST,
  extends ST ST.
Proof.
  induction ST; auto.
Qed.

Preservation, Finally

We can now give the final, correct statement of the type preservation property:

Definition preservation_theorem := ST t t' T st st',
  empty; STt \in T
  store_well_typed ST st
  t / st --> t' / st'
   ST',
    (extends ST' ST
     empty; ST't' \in T
     store_well_typed ST' st').
Note that this gives us just what we need to "turn the crank" when applying the theorem to multi-step reduction sequences.

Substitution Lemma

To prove preservation, we need to re-develop the rest of the machinery that we saw for the pure STLC (plus a couple of new things about store typings and extension)...

Inductive appears_free_in : stringtmProp :=
  | afi_var : x,
      appears_free_in x (var x)
  | afi_app1 : x t1 t2,
      appears_free_in x t1appears_free_in x (app t1 t2)
  | afi_app2 : x t1 t2,
      appears_free_in x t2appears_free_in x (app t1 t2)
  | afi_abs : x y T11 t12,
      yx
      appears_free_in x t12
      appears_free_in x (abs y T11 t12)
  | afi_succ : x t1,
      appears_free_in x t1
      appears_free_in x (scc t1)
  | afi_pred : x t1,
      appears_free_in x t1
      appears_free_in x (prd t1)
  | afi_mult1 : x t1 t2,
      appears_free_in x t1
      appears_free_in x (mlt t1 t2)
  | afi_mult2 : x t1 t2,
      appears_free_in x t2
      appears_free_in x (mlt t1 t2)
  | afi_if0_1 : x t1 t2 t3,
      appears_free_in x t1
      appears_free_in x (test0 t1 t2 t3)
  | afi_if0_2 : x t1 t2 t3,
      appears_free_in x t2
      appears_free_in x (test0 t1 t2 t3)
  | afi_if0_3 : x t1 t2 t3,
      appears_free_in x t3
      appears_free_in x (test0 t1 t2 t3)
  | afi_ref : x t1,
      appears_free_in x t1appears_free_in x (ref t1)
  | afi_deref : x t1,
      appears_free_in x t1appears_free_in x (deref t1)
  | afi_assign1 : x t1 t2,
      appears_free_in x t1appears_free_in x (assign t1 t2)
  | afi_assign2 : x t1 t2,
      appears_free_in x t2appears_free_in x (assign t1 t2).

Hint Constructors appears_free_in.

Lemma free_in_context : x t T Gamma ST,
   appears_free_in x t
   Gamma; STt \in T
    T', Gamma x = Some T'.
Proof with eauto.
  intros. generalize dependent Gamma. generalize dependent T.
  induction H;
        intros; (try solve [ inversion H0; subst; eauto ]).
  - (* afi_abs *)
    inversion H1; subst.
    apply IHappears_free_in in H8.
    rewrite update_neq in H8; assumption.
Qed.

Lemma context_invariance : Gamma Gamma' ST t T,
  Gamma; STt \in T
  ( x, appears_free_in x tGamma x = Gamma' x) →
  Gamma'; STt \in T.
Proof with eauto.
  intros.
  generalize dependent Gamma'.
  induction H; intros...
  - (* T_Var *)
    apply T_Var. symmetry. rewrite <- H...
  - (* T_Abs *)
    apply T_Abs. apply IHhas_type; intros.
    unfold update, t_update.
    destruct (eqb_stringP x x0)...
  - (* T_App *)
    eapply T_App.
      apply IHhas_type1...
      apply IHhas_type2...
  - (* T_Mult *)
    eapply T_Mult.
      apply IHhas_type1...
      apply IHhas_type2...
  - (* T_If0 *)
    eapply T_If0.
      apply IHhas_type1...
      apply IHhas_type2...
      apply IHhas_type3...
  - (* T_Assign *)
    eapply T_Assign.
      apply IHhas_type1...
      apply IHhas_type2...
Qed.

Lemma substitution_preserves_typing : Gamma ST x s S t T,
  empty; STs \in S
  (update Gamma x S); STt \in T
  Gamma; ST ⊢ ([x:=s]t) \in T.
Proof with eauto.
  intros Gamma ST x s S t T Hs Ht.
  generalize dependent Gamma. generalize dependent T.
  induction t; intros T Gamma H;
    inversion H; subst; simpl...
  - (* var *)
    rename s0 into y.
    destruct (eqb_stringP x y).
    + (* x = y *)
      subst.
      rewrite update_eq in H3.
      inversion H3; subst.
      eapply context_invariance...
      intros x Hcontra.
      destruct (free_in_context _ _ _ _ _ Hcontra Hs)
        as [T' HT'].
      inversion HT'.
    + (* x <> y *)
      apply T_Var.
      rewrite update_neq in H3...
  - (* abs *) subst.
    rename s0 into y.
    destruct (eqb_stringP x y).
    + (* x = y *)
      subst.
      apply T_Abs. eapply context_invariance...
      intros. rewrite update_shadow. reflexivity.
    + (* x <> x0 *)
      apply T_Abs. apply IHt.
      eapply context_invariance...
      intros. unfold update, t_update.
      destruct (eqb_stringP y x0)...
      subst.
      rewrite false_eqb_string...
Qed.

Assignment Preserves Store Typing

Next, we must show that replacing the contents of a cell in the store with a new value of appropriate type does not change the overall type of the store. (This is needed for the ST_Assign rule.)

Lemma assign_pres_store_typing : ST st l t,
  l < length st
  store_well_typed ST st
  empty; STt \in (store_Tlookup l ST) →
  store_well_typed ST (replace l t st).
Proof with auto.
  intros ST st l t Hlen HST Ht.
  inversion HST; subst.
  split. rewrite length_replace...
  intros l' Hl'.
  destruct (l' =? l) eqn: Heqll'.
  - (* l' = l *)
    apply Nat.eqb_eq in Heqll'; subst.
    rewrite lookup_replace_eq...
  - (* l' <> l *)
    apply Nat.eqb_neq in Heqll'.
    rewrite lookup_replace_neq...
    rewrite length_replace in Hl'.
    apply H0...
Qed.

Weakening for Stores

Finally, we need a lemma on store typings, stating that, if a store typing is extended with a new location, the extended one still allows us to assign the same types to the same terms as the original.
(The lemma is called store_weakening because it resembles the "weakening" lemmas found in proof theory, which show that adding a new assumption to some logical theory does not decrease the set of provable theorems.)

Lemma store_weakening : Gamma ST ST' t T,
  extends ST' ST
  Gamma; STt \in T
  Gamma; ST't \in T.
Proof with eauto.
  intros. induction H0; eauto.
  - (* T_Loc *)
    erewrite <- extends_lookup...
    apply T_Loc.
    eapply length_extends...
Qed.
We can use the store_weakening lemma to prove that if a store is well typed with respect to a store typing, then the store extended with a new term t will still be well typed with respect to the store typing extended with t's type.

Lemma store_well_typed_app : ST st t1 T1,
  store_well_typed ST st
  empty; STt1 \in T1
  store_well_typed (ST ++ T1::nil) (st ++ t1::nil).
Proof with auto.
  intros.
  unfold store_well_typed in ×.
  inversion H as [Hlen Hmatch]; clear H.
  rewrite app_length, plus_comm. simpl.
  rewrite app_length, plus_comm. simpl.
  split...
  - (* types match. *)
    intros l Hl.
    unfold store_lookup, store_Tlookup.
    apply le_lt_eq_dec in Hl; inversion Hl as [Hlt | Heq].
    + (* l < length st *)
      apply lt_S_n in Hlt.
      rewrite !app_nth1...
      × apply store_weakening with ST. apply extends_app.
        apply Hmatch...
      × rewrite Hlen...
    + (* l = length st *)
      inversion Heq.
      rewrite app_nth2; try omega.
      rewrite <- Hlen.
      rewrite minus_diag. simpl.
      apply store_weakening with ST...
      { apply extends_app. }
        rewrite app_nth2; try omega.
      rewrite minus_diag. simpl. trivial.
Qed.

Preservation!

Now that we've got everything set up right, the proof of preservation is actually quite straightforward.
Begin with one technical lemma:

Lemma nth_eq_last : A (l:list A) x d,
  nth (length l) (l ++ x::nil) d = x.
Proof.
  induction l; intros; [ auto | simpl; rewrite IHl; auto ].
Qed.
And here, at last, is the preservation theorem and proof:

Theorem preservation : ST t t' T st st',
  empty; STt \in T
  store_well_typed ST st
  t / st --> t' / st'
   ST',
    (extends ST' ST
     empty; ST't' \in T
     store_well_typed ST' st').
Proof with eauto using store_weakening, extends_refl.
  remember (@empty ty) as Gamma.
  intros ST t t' T st st' Ht.
  generalize dependent t'.
  induction Ht; intros t' HST Hstep;
    subst; try solve_by_invert; inversion Hstep; subst;
    try (eauto using store_weakening, extends_refl).
  (* T_App *)
  - (* ST_AppAbs *) ST.
    inversion Ht1; subst.
    split; try split... eapply substitution_preserves_typing...
  - (* ST_App1 *)
    eapply IHHt1 in H0...
    inversion H0 as [ST' [Hext [Hty Hsty]]].
     ST'...
  - (* ST_App2 *)
    eapply IHHt2 in H5...
    inversion H5 as [ST' [Hext [Hty Hsty]]].
     ST'...
  - (* T_Succ *)
    + (* ST_Succ *)
      eapply IHHt in H0...
      inversion H0 as [ST' [Hext [Hty Hsty]]].
       ST'...
  - (* T_Pred *)
    + (* ST_Pred *)
      eapply IHHt in H0...
      inversion H0 as [ST' [Hext [Hty Hsty]]].
       ST'...
  (* T_Mult *)
  - (* ST_Mult1 *)
    eapply IHHt1 in H0...
    inversion H0 as [ST' [Hext [Hty Hsty]]].
     ST'...
  - (* ST_Mult2 *)
    eapply IHHt2 in H5...
    inversion H5 as [ST' [Hext [Hty Hsty]]].
     ST'...
  - (* T_If0 *)
    + (* ST_If0_1 *)
      eapply IHHt1 in H0...
      inversion H0 as [ST' [Hext [Hty Hsty]]].
       ST'... split...
  (* T_Ref *)
  - (* ST_RefValue *)
     (ST ++ T1::nil).
    inversion HST; subst.
    split.
      apply extends_app.
    split.
      replace (Ref T1)
        with (Ref (store_Tlookup (length st) (ST ++ T1::nil))).
      apply T_Loc.
      rewrite <- H. rewrite app_length, plus_comm. simpl. omega.
      unfold store_Tlookup. rewrite <- H. rewrite nth_eq_last.
      reflexivity.
      apply store_well_typed_app; assumption.
  - (* ST_Ref *)
    eapply IHHt in H0...
    inversion H0 as [ST' [Hext [Hty Hsty]]].
     ST'...
  (* T_Deref *)
  - (* ST_DerefLoc *)
     ST. split; try split...
    inversion HST as [_ Hsty].
    replace T11 with (store_Tlookup l ST).
    apply Hsty...
    inversion Ht; subst...
  - (* ST_Deref *)
    eapply IHHt in H0...
    inversion H0 as [ST' [Hext [Hty Hsty]]].
     ST'...
  (* T_Assign *)
  - (* ST_Assign *)
     ST. split; try split...
    eapply assign_pres_store_typing...
    inversion Ht1; subst...
  - (* ST_Assign1 *)
    eapply IHHt1 in H0...
    inversion H0 as [ST' [Hext [Hty Hsty]]].
     ST'...
  - (* ST_Assign2 *)
    eapply IHHt2 in H5...
    inversion H5 as [ST' [Hext [Hty Hsty]]].
     ST'...
Qed.

Exercise: 3 stars, standard (preservation_informal)

Write a careful informal proof of the preservation theorem, concentrating on the T_App, T_Deref, T_Assign, and T_Ref cases.
(* FILL IN HERE *)

Progress

As we've said, progress for this system is pretty easy to prove; the proof is very similar to the proof of progress for the STLC, with a few new cases for the new syntactic constructs.

Theorem progress : ST t T st,
  empty; STt \in T
  store_well_typed ST st
  (value t t' st', t / st --> t' / st').
Proof with eauto.
  intros ST t T st Ht HST. remember (@empty ty) as Gamma.
  induction Ht; subst; try solve_by_invert...
  - (* T_App *)
    right. destruct IHHt1 as [Ht1p | Ht1p]...
    + (* t1 is a value *)
      inversion Ht1p; subst; try solve_by_invert.
      destruct IHHt2 as [Ht2p | Ht2p]...
      × (* t2 steps *)
        inversion Ht2p as [t2' [st' Hstep]].
         (app (abs x T t) t2'), st'...
    + (* t1 steps *)
      inversion Ht1p as [t1' [st' Hstep]].
       (app t1' t2), st'...
  - (* T_Succ *)
    right. destruct IHHt as [Ht1p | Ht1p]...
    + (* t1 is a value *)
      inversion Ht1p; subst; try solve [ inversion Ht ].
      × (* t1 is a const *)
         (const (S n)), st...
    + (* t1 steps *)
      inversion Ht1p as [t1' [st' Hstep]].
       (scc t1'), st'...
  - (* T_Pred *)
    right. destruct IHHt as [Ht1p | Ht1p]...
    + (* t1 is a value *)
      inversion Ht1p; subst; try solve [inversion Ht ].
      × (* t1 is a const *)
         (const (pred n)), st...
    + (* t1 steps *)
      inversion Ht1p as [t1' [st' Hstep]].
       (prd t1'), st'...
  - (* T_Mult *)
    right. destruct IHHt1 as [Ht1p | Ht1p]...
    + (* t1 is a value *)
      inversion Ht1p; subst; try solve [inversion Ht1].
      destruct IHHt2 as [Ht2p | Ht2p]...
      × (* t2 is a value *)
        inversion Ht2p; subst; try solve [inversion Ht2].
         (const (mult n n0)), st...
      × (* t2 steps *)
        inversion Ht2p as [t2' [st' Hstep]].
         (mlt (const n) t2'), st'...
    + (* t1 steps *)
      inversion Ht1p as [t1' [st' Hstep]].
       (mlt t1' t2), st'...
  - (* T_If0 *)
    right. destruct IHHt1 as [Ht1p | Ht1p]...
    + (* t1 is a value *)
      inversion Ht1p; subst; try solve [inversion Ht1].
      destruct n.
      × (* n = 0 *) t2, st...
      × (* n = S n' *) t3, st...
    + (* t1 steps *)
      inversion Ht1p as [t1' [st' Hstep]].
       (test0 t1' t2 t3), st'...
  - (* T_Ref *)
    right. destruct IHHt as [Ht1p | Ht1p]...
    + (* t1 steps *)
      inversion Ht1p as [t1' [st' Hstep]].
       (ref t1'), st'...
  - (* T_Deref *)
    right. destruct IHHt as [Ht1p | Ht1p]...
    + (* t1 is a value *)
      inversion Ht1p; subst; try solve_by_invert.
      eexists. eexists. apply ST_DerefLoc...
      inversion Ht; subst. inversion HST; subst.
      rewrite <- H...
    + (* t1 steps *)
      inversion Ht1p as [t1' [st' Hstep]].
       (deref t1'), st'...
  - (* T_Assign *)
    right. destruct IHHt1 as [Ht1p|Ht1p]...
    + (* t1 is a value *)
      destruct IHHt2 as [Ht2p|Ht2p]...
      × (* t2 is a value *)
        inversion Ht1p; subst; try solve_by_invert.
        eexists. eexists. apply ST_Assign...
        inversion HST; subst. inversion Ht1; subst.
        rewrite H in H5...
      × (* t2 steps *)
        inversion Ht2p as [t2' [st' Hstep]].
         (assign t1 t2'), st'...
    + (* t1 steps *)
      inversion Ht1p as [t1' [st' Hstep]].
       (assign t1' t2), st'...
Qed.

References and Nontermination

An important fact about the STLC (proved in chapter Norm) is that it is is normalizing -- that is, every well-typed term can be reduced to a value in a finite number of steps.
What about STLC + references? Surprisingly, adding references causes us to lose the normalization property: there exist well-typed terms in the STLC + references which can continue to reduce forever, without ever reaching a normal form!
How can we construct such a term? The main idea is to make a function which calls itself. We first make a function which calls another function stored in a reference cell; the trick is that we then smuggle in a reference to itself!
   (\r:Ref (Unit -> Unit).
        r := (\x:Unit.(!r) unit); (!r) unit)
   (ref (\x:Unit.unit))
First, ref (\x:Unit.unit) creates a reference to a cell of type Unit Unit. We then pass this reference as the argument to a function which binds it to the name r, and assigns to it the function \x:Unit.(!r) unit -- that is, the function which ignores its argument and calls the function stored in r on the argument unit; but of course, that function is itself! To start the divergent loop, we execute the function stored in the cell by evaluating (!r) unit.
Here is the divergent term in Coq:

Module ExampleVariables.

Open Scope string_scope.

Definition x := "x".
Definition y := "y".
Definition r := "r".
Definition s := "s".

End ExampleVariables.

Module RefsAndNontermination.
Import ExampleVariables.

Definition loop_fun :=
  abs x Unit (app (deref (var r)) unit).

Definition loop :=
  app
    (abs r (Ref (Arrow Unit Unit))
      (tseq (assign (var r) loop_fun)
              (app (deref (var r)) unit)))
    (ref (abs x Unit unit)).
This term is well typed:

Lemma loop_typeable : T, empty; nilloop \in T.
Proof with eauto.
  eexists. unfold loop. unfold loop_fun.
  eapply T_App...
  eapply T_Abs...
  eapply T_App...
    eapply T_Abs. eapply T_App. eapply T_Deref. eapply T_Var.
    unfold update, t_update. simpl. reflexivity. auto.
  eapply T_Assign.
    eapply T_Var. unfold update, t_update. simpl. reflexivity.
  eapply T_Abs.
    eapply T_App...
      eapply T_Deref. eapply T_Var. reflexivity.
Qed.
To show formally that the term diverges, we first define the step_closure of the single-step reduction relation, written -->+. This is just like the reflexive step closure of single-step reduction (which we're been writing -->*), except that it is not reflexive: t -->+ t' means that t can reach t' by one or more steps of reduction.

Inductive step_closure {X:Type} (R: relation X) : XXProp :=
  | sc_one : (x y : X),
                R x ystep_closure R x y
  | sc_step : (x y z : X),
                R x y
                step_closure R y z
                step_closure R x z.

Definition multistep1 := (step_closure step).
Notation "t1 '/' st '-->+' t2 '/' st'" :=
        (multistep1 (t1,st) (t2,st'))
        (at level 40, st at level 39, t2 at level 39).
Now, we can show that the expression loop reduces to the expression !(loc 0) unit and the size-one store [r:=(loc 0)]loop_fun.
As a convenience, we introduce a slight variant of the normalize tactic, called reduce, which tries solving the goal with multi_refl at each step, instead of waiting until the goal can't be reduced any more. Of course, the whole point is that loop doesn't normalize, so the old normalize tactic would just go into an infinite loop reducing it forever!

Ltac print_goal := match goal with ⊢ ?xidtac x end.
Ltac reduce :=
    repeat (print_goal; eapply multi_step ;
            [ (eauto 10; fail) | (instantiate; compute)];
            try solve [apply multi_refl]).
Next, we use reduce to show that loop steps to !(loc 0) unit, starting from the empty store.

Lemma loop_steps_to_loop_fun :
  loop / nil -->*
  app (deref (loc 0)) unit / cons ([r:=loc 0]loop_fun) nil.
Proof.
  unfold loop.
  reduce.
Qed.
Finally, we show that the latter expression reduces in two steps to itself!

Lemma loop_fun_step_self :
  app (deref (loc 0)) unit / cons ([r:=loc 0]loop_fun) nil -->+
  app (deref (loc 0)) unit / cons ([r:=loc 0]loop_fun) nil.
Proof with eauto.
  unfold loop_fun; simpl.
  eapply sc_step. apply ST_App1...
  eapply sc_one. compute. apply ST_AppAbs...
Qed.

Exercise: 4 stars, standard (factorial_ref)

Use the above ideas to implement a factorial function in STLC with references. (There is no need to prove formally that it really behaves like the factorial. Just uncomment the example below to make sure it gives the correct result when applied to the argument 4.)

Definition factorial : tm
  (* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.

Lemma factorial_type : empty; nilfactorial \in (Arrow Nat Nat).
Proof with eauto.
  (* FILL IN HERE *) Admitted.
If your definition is correct, you should be able to just uncomment the example below; the proof should be fully automatic using the reduce tactic.

(* 
Lemma factorial_4 : exists st,
  app factorial (const 4) / nil -->* const 24 / st.
Proof.
  eexists. unfold factorial. reduce.
Qed.
*)

Additional Exercises

Exercise: 5 stars, standard, optional (garabage_collector)

Challenge problem: modify our formalization to include an account of garbage collection, and prove that it satisfies whatever nice properties you can think to prove about it.

End RefsAndNontermination.
End STLCRef.