

CS/INFO 4154:

Analytics-driven Game Design

Class 9:

Learning Pathways

Mon Wed Fri

9/13
Learning Pathways

9/15
Throwaway Testing 1

9/18
Throwaway Testing 2

9/27
Alpha Testing 1

9/29
Alpha Testing 2

Assignment 5: Throwaway Prototype

- Friday and Monday
- No pressure
- Doesn't need to be playable or integrated
- Pick some pieces of your game and build them
 - Avatar moves/jumps on flat land
 - Grid with nothing on it
 - Background artwork
- Submit picture through CMS by end of class on Friday 8/15

Outline

- 1. More thoughts on difficulty
- 2. Learning pathways
- 3. Group activity: progression design

Outline

- 1. More thoughts on difficulty
- 2. Learning pathways
- 3. Group activity: progression design

Review: Flow

Flow: Ideal situation

Impact of challenge on engagement

Abuhamdeh and Csikszentmihalyi 2012

Inverted-U hypothesis

Extreme example: QWOP

Pair activity: quick discussion

- Pick your favorite game
 - How difficult was *your* experience with this game?
 - Is this game *easier* or *harder* than other games you have played and liked less?
 - Does the inverted-U hypothesis predict *your* engagement?

Large-scale experiment

Click on fraction

Type fraction

Smaller ship

Larger ship

Less time

More time

Battleship Numberline

Impact of input type

Click on fraction

Type fraction

Impact of target size

Smaller ship

Larger ship

Lomas et al. CHI 2013

Impact of time limit

Less time

More time

Lomas et al. CHI 2013

Experiment: 28,800 conditions!

- Input types: *click on number line* vs. *type fraction*
- Ship sizes: 4, 6, 8, 10, 16, 20, 24, 30, 40%
- Time limits: 2, 3, 4, 5, 8, 10, 15, 30 seconds

Experiment: 70,000 people

Results

- Clicking on target = more time played
- Bigger target = more time played
- Longer time limit = more time played

Inverted U?

Lomas et al. CHI 2013

Findings

"In contrast to the Inverted-U hypothesis, which predicts that a moderate level of challenge should lead to maximum engagement, we found that the easier the game, the longer people played"

Bastet

Frederico Poloni

Vocal Joystick

Analysis of Tetris

Spiel et al. CHI 2017

Algorithms

- Nicetris
 - Ranks pieces by current goodness-of-fit, chooses best
- Bastet
 - Ranks pieces by current goodness-of-fit, chooses worst
- Grab Bag (original game)
 - Pieces drawn randomly without replacement
- True Random
 - Pieces chosen randomly at all times
- Skewed Random
 - 50% probability of or or otherwise random

Pair activity: rank easiest → hardest

- Nicetris
 - Ranks pieces by current goodness-of-fit, chooses best
- Bastet
 - Ranks pieces by current goodness-of-fit, chooses worst
- Grab Bag (original game)
 - Pieces drawn randomly without replacement
- True Random
 - Pieces chosen randomly at all times
- Skewed Random
 - 50% probability of or or otherwise random

Performance: Lines cleared

Perceived difficulty

Spiel et al. CHI 2017

Pair activity: rank least fun → most fun

- Nicetris
 - Ranks pieces by current goodness-of-fit, chooses best
- Bastet
 - Ranks pieces by current goodness-of-fit, chooses worst
- Grab Bag (original game)
 - Pieces drawn randomly without replacement
- True Random
 - Pieces chosen randomly at all times
- Skewed Random
 - 50% probability of or or otherwise random

Fun

Spiel et al. CHI 2017

Fun vs. Difficulty

Findings

"players tended to have more fun in TETRIS the easier they perceived the game to be"

Findings

"Interestingly though, individually, **only eleven out of the sixteen** players found the game *more fun* when it was perceived as *less difficult*."

"The others attributed *more fun* to algorithms they perceived as *more difficult*, indicating that engagement and enjoyment are linked differently for different types of players."

Key Lesson of this Class #3

when in doubt, make the game easier

Outline

- 1. More thoughts on difficulty
- 2. Learning pathways
- 3. Group activity: progression design

Review: Design Patterns

Platformer: Jump

Stealth Game: Avoidance

- Help player to *recognize* situations and *apply* learned skills
- Often inspired by game genre
- Ultimately, specific to your game design

Review: Composition

Avoidance + Avoidance

Avoidance + Chasing

Review: ITCOM Gantt Chart

Make a Gantt Chart for In the Company of Myself

http://www.kongregate.com/games/2DArray/the-company-of-myself

Design Patterns

Design Patterns

Design Patterns

Level 3

ITCOM Skill Tree

ITCOM Skill Tree

- Two promising learning pathways:
 - move → complex jumps → clone and jump → clone and complex jumps
 - move → clone and jump → complex jumps → clone and complex jumps

Outline

- 1. More thoughts on difficulty
- 2. Learning pathways
- 3. Group activity: progression design

Group activity #2: plan your tasks

- Step 1. Make an (Ideal) Gantt Chart for your game
- Step 2. Design a level that reinforces a mechanic
- Step 3. Design a level that *combines* two mechanics