

CS/INFO 4154:

Analytics-driven Game Design

Lecture 7:

Artificial Intelligence

Alpha Prototype

- Thursday, October 1st
- Three playable levels

Artificial Intelligence!

The Dream

AI

Play games automatically

Procedural Content Generation

Design games automatically

What makes an AI good?

What are examples of good AI?

Today

- Scripts
- Planning
- Pathfinding

Today

- Scripts
- Planning
- Pathfinding

Scripts

- 1. IF <condition is true> THEN <perform action>
- 2. IF <condition is true> THEN <perform action>
- 3. **IF** <condition is true> **THEN** <perform action>

Example: Tic Tac Toe

- 1. If I can win, win
- 2. If opponent can win, prevent it
- 3. If center is available, take it
- 4. If corner is available, take it

Doom II

Final Fantasy VII

Final Fantasy VII

- If (Count == 0 OR Count == 2) Then
 - SelectedTarget = random opponent
 - Use Search Scope on SelectedTarget
 - Count = Count + 1
- If (Count == 1 OR Count == 3) Then
 - With probability 2/3:
 - If Self HP < (Self Max HP / 2) Then
 - Use Scorpion Tail on SelectedTarget
 - Else
 - Use Rifle on SelectedTarget
 - With 1/3 Chance:
 - Use Scorpion Tail on SelectedTarget
 - Count = Count + 1

"Cheating"

Advantages/Disadvantages

Can express complex behaviors

"Smart" behavior can be *very* complex

Not so scalable

No natural way to vary difficulty

Today

- Scripts
- Planning
- Pathfinding

Today

- Scripts
- Planning
- Pathfinding

Adversarial Search

Importance of search depth in Chess

- Novice: ~4
- Master: ~8
- Grandmaster: ~12
- Deep Blue: 6 40

Advantages/Disadvantages

Potentially *much* smarter

Natural way to vary difficulty

State-space explosion

Game must have certain properties

Unclear what to do if you can't "see" the end

Heuristics: Chess

- Pawn: 1 point
- Knight & Bishop: 3 points
- Rook: 5 points
- Queen: 11 points

Minimax

Advantages/Disadvantages

Scalable

Can be rational without "seeing" the endgame

Strength depends a lot on the heuristic

Still only works for some games

Simultaneous Actions

A beats B beats C beats A

Heimerdinger is Weak Against

Heimerdinger is Strong Against

A beats B beats C beats A

Opponent always plays rock...

Opponent plays...

Idea: Mixed Strategy

Idea: Mixed Strategy

Idea: Mixed Strategy

Evaluating a strategy

• Idea: compute the *expected reward* for a strategy

Joseph .

() _

Reward Matrix

	1	-1
-1	0	1
1	_1	0

Expected Reward

- = probability of event₁ * reward of event₁
- + probability of event₂ * reward of event₂
- + probability of event₃ * reward of event₃

• • •

Expected Reward

$$=p_{me}(\bigcirc)\times p_{you}(\bigcirc)\times R(\bigcirc)$$

$$+p_{me}(\bigcirc)\times p_{you}(\bigcirc)\times R(\bigcirc)$$

- - -

Expected Reward

$$reward = \pi_{you}{}^{T}R\pi_{me}$$

Minimax!

$$\max_{\pi_{me}} \left(\min_{\pi_{you}} \pi_{you}^T R \pi_{me} \right)$$

Linear Programming

Calculating Reward

 $\max_{v,\pi} v$ such that

$$\sum_{i} \pi_{i} = 1$$

$$\pi \geq \mathbf{0}$$

$$v \leq \mathbf{R} \pi$$

Optimal Strategy

Rock Paper Scissors

http://www.bbc.com/news/technology-24803751

right left right left

Pathfinding

Make a grid!

Pathfinding: Depth-First

Pathfinding: Breadth-First

Pathfinding: Breadth-First

Breadth-First is Slow!

Idea: use heuristics

A* Algorithm

- Score f = g + h
 - g: distance on best path
 - h: naïve distance to **goal**

Manhattan distance = 30+20 = 50

A* Mario

Reinforcement learning

Civilization II

Wins 78% of games!

Group Activity Choice

- 1. Think about AI and write some scripts
- 2. Discuss how an AI might solve your game
- 3. Just work on your games