
gamedesigninitiative
at cornell university

the

Scene 
Graphs



Recall: Structure of a CUGL Application

Main Application

Scene

Root NodeModels

Scene

Root NodeModels

Active Dormant



onStartup()

� Handles the game assets
� Attaches the asset loaders
� Loads immediate assets

� Starts any global singletons
� Example: AudioChannels

� Creates any player modes
� But does not launch yet
� Waits for assets to load
� Like GDXRoot in 3152

Recall: The Application Class

update()

� Called each animation frame

� Manages gameplay
� Converts input to actions
� Processes NPC behavior
� Resolves physics
� Resolves other interactions

� Updates the scene graph
� Transforms nodes
� Enables/disables nodes



onStartup()

� Handles the game assets
� Attaches the asset loaders
� Loads immediate assets

� Starts any global singletons
� Example: AudioChannels

� Creates any player modes
� But does not launch yet
� Waits for assets to load
� Like GDXRoot in 3152

Recall: The Application Class

update()

� Called each animation frame

� Manages gameplay
� Converts input to actions
� Processes NPC behavior
� Resolves physics
� Resolves other interactions

� Updates the scene graph
� Transforms nodes
� Enables/disables nodes

Does not draw!

Handled separatelyonShutdown()

cleans this up



� Use the draw() method
� Called after update()
� Clears screen first
� Uses clear color field

� Can use any OpenGL
� Included in CUBase.h
� Best to use OpenGLES

(subset of OpenGL)

� Or use a SpriteBatch
� Mostly like in 3152

void draw() {
glEnableVertexAttribArray(0);    
glBindBuffer(GL_ARRAY_BUFFER, 

vertexbuffer); 
glVertexAttribPointer(0, 3, GL_FLOAT,   

GL_FALSE, 0, (void*)0 );
glDrawArrays(GL_TRIANGLES, 0, 3); 
glDisableVertexAttribArray(0);

}

Drawing in CUGL

void draw() {
batch->begin();
batch->draw(image1,Vec2(10,10));
batch->draw(image2,Vec2(50,20));
batch->end();

}



The Scene Graph

Node

Scene

Node Node

Node Node Node Node Node Node

Or any
subclass

Node



The Scene Graph

Node

Scene

Node Node

Node Node Node Node Node Node

Node

Game
Camera

Bounded
box inside

Coords relative 
to parent box



Scene Root

Each Node is a Coordinate System

Node Node

Node
Node

Node

Node



Scene Root

Each Node is a Coordinate System

Node

Node

NodeNode

Node
Node

Node

Scene

Node

Node Node

Node

Node Node



Scene Root

Each Node is a Coordinate System

Node Node

Node
Node

Node

Node

Origin

Origin
Origin

Origin



� Touch handler requires
� Which object touched
� Location inside object 

� Scene graph is a search tree
� Check if touch is in parent
� … then check each child
� Faster than linear search

� But limit this to a search
� No input control in node
� Use polling over callbacks

Motivation: Touch Interfaces

Scene

Node

Node

NodeNode

Node
Node



Scene Root

Settings Pass Down the Graph

Node

Node

Node
Transforms on parent

also transform children



Scene Root

Settings Pass Down the Graph

Node

Node

Node Transparency on parent
also applies to children



Scene

Settings Pass Down the Graph

Node

Node

Node Disabling the parent
also disables children



� Nodes have content size
� Width/height of contents
� Measured in node space
� But only a guideline: 

content can be outside

� Nodes have an anchor
� Location in node space
� Percentage of width/height
� Does not affect the origin

� Both may affect position

Anchors and Content

Node

Origin

Width

H
eight



� Nodes have content size
� Width/height of contents
� Measured in node space
� But only a guideline: 

content can be outside

� Nodes have an anchor
� Location in node space
� Percentage of width/height
� Does not affect the origin

� Both may affect position

Anchors and Content

Node

Width

H
eight

Anchor
(0,0)



� Nodes have content size
� Width/height of contents
� Measured in node space
� But only a guideline: 

content can be outside

� Nodes have an anchor
� Location in node space
� Percentage of width/height
� Does not affect the origin

� Both may affect position

Anchors and Content

Node

Origin

Width

H
eightAnchor

(0.5,0.5)



� Nodes have content size
� Width/height of contents
� Measured in node space
� But only a guideline: 

content can be outside

� Nodes have an anchor
� Location in node space
� Percentage of width/height
� Does not affect the origin

� Both may affect position

Anchors and Content

Node

Origin

Width

H
eight

Anchor
(1,0.5)



Anchor and Position

Parent

Node

Child

Child

Origin

Anchor:  (0,0)
Position: (150,50)



Anchor and Position

Parent

Node

Origin

Anchor:  (0.5,0.5)
Position: (150,50)

Child

Child



Layout Managers

� Not all devices have the same aspect ratio

� Sometimes, want placement to adjust to fit

Screen

Screen

VS



Layout Managers

� Not all devices have the same aspect ratio

� Sometimes, want placement to adjust to fit

Screen

Screen

Node

Node

VS

Node

Node



Layout Managers

Parent Parent

Parent

AnchorLayout FlowLayout

GridLayout

Node

Node

Node

Node

Node

Node Node Node

Node Node

Node

Node

Node Node Node

Node

Node

Node

Node



Layout Managers

Parent Parent

Parent

AnchorLayout FlowLayout

GridLayout

Node

Node

Node

Node

Node

Node Node Node

Node Node

Node

Node

Node Node Node

Node

Node

Node

Node

See Documentation for Details



How to Use a Layout Manager

1. Create a layout manager

2. Assign a relative position to each child
� Example: middle left in an anchor layout
� Layout manager maps strings to layout
� Use the “name” string of the child node

3. Attach manager to the parent node

4. Call doLayout() on the parent



Safe Area: Modern Phones

Safe Area

UI elements should avoid 
notch, rounded corners

But animations 
should fill screen



Safe Area: Modern Phones

Scene

Game
Node

UI
NodeArt that

must fill 
the screen

Elements 
to stay in
safe area

See Display class to find safe area



� scene->render(batch)
� Uses SpriteBatch to draw
� Calls begin()/end() for you
� Sets the SpriteBatch camera
� Limits in-between drawing

� Uses a preorder traversal
� Draws a parent node first
� Draws children in order
� Parent acts as background

Rendering a Scene is Easy

Node

Scene

Node

Node NodeNode Node

1

2 3 5 6

4



� Sprites = textured triangles
� Gather all sprite vertices
� Make one list of triangles
� Send them to GPU at once

� But stall on texture change
� Reorder data on texture
� Draw texture all at once
� Limits texture switches
� Safe if there is no overlap

� Hence the name!

How Does a SpriteBatch Work?



� Sprites = textured triangles
� Gather all sprite vertices
� Make one list of triangles
� Send them to GPU at once

� But stall on texture change
� Reorder data on texture
� Draw texture all at once
� Limits texture switches
� Safe if there is no overlap

� Hence the name!

How Does a SpriteBatch Work?



� Sprites = textured triangles
� Gather all sprite vertices
� Make one list of triangles
� Send them to GPU at once

� But stall on texture change
� Reorder data on texture
� Draw texture all at once
� Limits texture switches
� Safe if there is no overlap

� Hence the name!

How Does a SpriteBatch Work?



� Sprites = textured triangles
� Gather all sprite vertices
� Make one list of triangles
� Send them to GPU at once

� But stall on texture change
� Reorder data on texture
� Draw texture all at once
� Limits texture switches
� Safe if there is no overlap

� Hence the name!

How Does a SpriteBatch Work?



� Sprites = textured triangles
� Gather all sprite vertices
� Make one list of triangles
� Send them to GPU at once

� But stall on texture change
� Reorder data on texture
� Draw texture all at once
� Limits texture switches
� Safe if there is no overlap

� Hence the name!

How Does a SpriteBatch Work?



� SpriteBatch defers to Scene
� Scene determines order
� Nec. because of recursion

� Give hints to the Scene
� Give each child a z-value
� Ties are permitted
� sortZOrder() sorts tree
� Can make this automatic

� Controls texture switching
� One texture = one z-value
� Reduces it to one draw call

Optimizing Performance: zOrder

Level 1
Level 0



� SpriteBatch defers to Scene
� Scene determines order
� Nec. because of recursion

� Give hints to the Scene
� Give each child a z-value
� Ties are permitted
� sortZOrder() sorts tree
� Can make this automatic

� Controls texture switching
� One texture = one z-value
� Reduces it to one draw call

Optimizing Performance: zOrder

Level 1
Level 0

But limited to siblings!
High priority refactor.



� Idea: Never switch textures
� Film strip is many images 
� We can draw part of texture
� One texture for everything?
� Called a texture atlas

� Disadvantages?
� Cannot tile textures
� Can be tricky to pack

� Ideal for interface design
� Images for UX widgets
� Often small and compact

Optimizing Performance: Atlases



� CUGL has many node types
� AnimationNode (animation)
� WireNode (wireframes)
� PolygonNode (tiled shapes)
� PathNode (lines with width)
� NinePatch (UI elements)
� Label (text)

� Learn them outside of class
� Read the documentation
� Play with the demos

Specialized Nodes

All one
graph node



JSON Language for Scene Graphs
"textfield" : {

"type"        : "Node",            
"format" : {  "type" : "Anchored" },              
"children"  : {                

"action"  : {                    
"type"   : "TextField",  
"data" : {                        

"font"       : "felt",
"text" : "Edit me", 
"size"       : [600,80],                   
"anchor"  : [0.5,0.5]                    

}, 
"layout" : {                        

"x_anchor" : "center",                       
"y_anchor" : "top"

}

Node
name

Node
type

Layout
manager

Child
nodes



JSON Language for Scene Graphs
"textfield" : {

"type"        : "Node",            
"format" : {  "type" : "Anchored" },              
"children"  : {                

"action"  : {                    
"type"   : "TextField",  
"data" : {                        

"font"       : "felt",
"text" : "Edit me", 
"size"       : [600,80],                   
"anchor"  : [0.5,0.5]                    

}, 
"layout" : {                        

"x_anchor" : "center",                       
"y_anchor" : "top"

}

Layout
manager

Node 
data

Info for 
parent layout 



"textfield" : {
"type"        : "Node",            
"format" : {  "type" : "Anchored" },              
"children"  : {                

"action"  : {                    
"type"   : "TextField",  
"data" : {                        

"font"       : "felt",
"text" : "Edit me", 
"size"       : [600,80],                   
"anchor"  : [0.5,0.5]                    

}, 
"layout" : {                        

"x_anchor" : "center",                       
"y_anchor" : "top"

}

Each node has
� Type
� Format
� Data
� Children
� Layout

JSON Language for Scene Graphs



Widget

"variables" : {
"image" : ["children","up","data","texture"]

},
"contents" : {

"type" : "Button",
"data" : {

"upnode" : "up", "visible" : false,
"anchor" : [0.5,0.5], "scale" : 0.8

},
"children" : {

"up" : {
"type" : "Image",
"data" : { "texture" : "play”}

}}}

Widgets: JSON Templates

JSON
"widgets": {

"mybutton" : "widgets/mybutton.json",
},
"scene2s": {

"thescene" : {
"type" : "Node",
"format" : { "type" : "Anchored" },
"children" : {

"button" : {
"type" : "Widget",
"data" : {

"key" : "mybutton",
"variables" : { "image":"altplay" }

},
"layout" : { "x_anchor" : "center" }

}}}



Widget

"variables" : {
"image" : ["children","up","data","texture"]

},
"contents" : {

"type" : "Button",
"data" : {

"upnode" : "up", "visible" : false,
"anchor" : [0.5,0.5], "scale" : 0.8

},
"children" : {

"up" : {
"type" : "Image",
"data" : { "texture" : "play”}

}}}

Widgets: JSON Templates

JSON
"widgets": {

"mybutton" : "widgets/mybutton.json",
},
"scene2s": {

"thescene" : {
"type" : "Node",
"format" : { "type" : "Anchored" },
"children" : {

"button" : {
"type" : "Widget",
"data" : {

"key" : "mybutton",
"variables" : { "image":"altplay" }

},
"layout" : { "x_anchor" : "center" }

}}}

Widget is
a subtree

Replace
w/ subtree



Widget

"variables" : {
"image" : ["children","up","data","texture"]

},
"contents" : {

"type" : "Button",
"data" : {

"upnode" : "up", "visible" : false,
"anchor" : [0.5,0.5], "scale" : 0.8

},
"children" : {

"up" : {
"type" : "Image",
"data" : { "texture" : "play”}

}}}

Widgets: JSON Templates

JSON
"widgets": {

"mybutton" : "widgets/mybutton.json",
},
"scene2s": {

"thescene" : {
"type" : "Node",
"format" : { "type" : "Anchored" },
"children" : {

"button" : {
"type" : "Widget",
"data" : {

"key" : "mybutton",
"variables" : { "image":"altplay" }

},
"layout" : { "x_anchor" : "center" }

}}}

Full path to 
value to change

Change the
variable

Provide the
layout



The Problem: Physics



The Problem: Physics

How big is
that scene graph?



draw()

� Overridden to render node
� Only node, not children
� The render method (do not 

touch) handles children

� Drawing data is cached
� The vertex positions
� The vertex colors
� The texture coordinates

� Cache passed to SpriteBatch

Defining Custom Nodes

generateRenderData()

� Overridden to update cache
� Change vertex positions
� Change vertex colors
� Change texture coordinates

� Only needed for reshaping
� Transforms for movement
� Called infrequently

� Optimizes the render pass



The draw() Method
void CustomNode::draw(const std::shared_ptr<SpriteBatch>& batch,   

const Mat4& transform, Color4 tint) {

if (!_rendered) {
generateRenderData();

} 

batch->setColor(tint);
batch->setTexture(_texture);
batch->setBlendEquation(_blendEquation);
batch->setBlendFunc(_srcFactor, _dstFactor);

batch->fill(_vertices, _vertsize, 0,
_indices,  _indxsize, 0,
transform);

}



The draw() Method
void CustomNode::draw(const std::shared_ptr<SpriteBatch>& batch,   

const Mat4& transform, Color4 tint) {

if (!_rendered) {
generateRenderData();

} 

batch->setColor(tint);
batch->setTexture(_texture);
batch->setBlendEquation(_blendEquation);
batch->setBlendFunc(_srcFactor, _dstFactor);

batch->fill(_vertices, _vertsize, 0,
_indices,  _indxsize, 0,
transform);

}

Computed from 
parent (+camera)

Computed from 
parent (+scene)

The Render Data



Summary

� CUGL tries to leverage ideas from 3152
� Top level class works like the classic GDXRoot
� Design architecture to switch between modes
� Use SpriteBatch class to draw textures in 2D.

� New idea is using scene graphs to draw
� Tree of nodes with relative coordinate systems
� Makes touch input easier to process
� Also helps with animation (later)

� New JSON language makes design easier


