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Recall: Structure of a CUGL Application
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onStartup()

� Handles the game assets
� Attaches the asset loaders
� Loads immediate assets

� Starts any global singletons
� Example: AudioChannels

� Creates any player modes
� But does not launch yet
� Waits for assets to load
� Like GDXRoot in 3152

Recall: The Application Class

update()

� Called each animation frame

� Manages gameplay
� Converts input to actions
� Processes NPC behavior
� Resolves physics
� Resolves other interactions

� Updates the scene graph
� Transforms nodes
� Enables/disables nodes
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update()

� Called each animation frame

� Manages gameplay
� Converts input to actions
� Processes NPC behavior
� Resolves physics
� Resolves other interactions

� Updates the scene graph
� Transforms nodes
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Does not draw!

Handled separatelyonShutdown()

cleans this up



� Use the draw() method
� Called after update()
� Clears screen first
� Uses clear color field

� Can use any OpenGL
� Included in CUBase.h
� Best to use OpenGLES

(subset of OpenGL)

� Or use a SpriteBatch
� Mostly like in 3152

void draw() {
glEnableVertexAttribArray(0);    
glBindBuffer(GL_ARRAY_BUFFER, 

vertexbuffer); 
glVertexAttribPointer(0, 3, GL_FLOAT,   

GL_FALSE, 0, (void*)0 );
glDrawArrays(GL_TRIANGLES, 0, 3); 
glDisableVertexAttribArray(0);

}

Drawing in CUGL

void draw() {
batch->begin();
batch->draw(image1,Vec2(10,10));
batch->draw(image2,Vec2(50,20));
batch->end();

}



The Scene Graph
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Scene Root

Each Node is a Coordinate System
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� Touch handler requires
� Which object touched
� Location inside object 

� Scene graph is a search tree
� Check if touch is in parent
� … then check each child
� Faster than linear search

� But limit this to a search
� No input control in node
� Use polling over callbacks

Motivation: Touch Interfaces
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Scene Root

Settings Pass Down the Graph

Node

Node

Node
Transforms on parent

also transform children



Scene Root

Settings Pass Down the Graph
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Scene

Settings Pass Down the Graph
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� Nodes have content size
� Width/height of contents
� Measured in node space
� But only a guideline: 

content can be outside

� Nodes have an anchor
� Location in node space
� Percentage of width/height
� Does not affect the origin

� Both may affect position

Anchors and Content
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� Nodes have content size
� Width/height of contents
� Measured in node space
� But only a guideline: 

content can be outside

� Nodes have an anchor
� Location in node space
� Percentage of width/height
� Does not affect the origin

� Both may affect position
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Anchor and Position
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Layout Managers

� Not all devices have the same aspect ratio

� Sometimes, want placement to adjust to fit

Screen
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Layout Managers
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How to Use a Layout Manager

1. Create a layout manager

2. Assign a relative position to each child
� Example: middle left in an anchor layout
� Layout manager maps strings to layout
� Use the “name” string of the child node

3. Attach manager to the parent node

4. Call doLayout() on the parent



Safe Area: Modern Phones

Safe Area

UI elements should avoid 
notch, rounded corners

But animations 
should fill screen



Safe Area: Modern Phones
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� scene->render(batch)
� Uses SpriteBatch to draw
� Calls begin()/end() for you
� Sets the SpriteBatch camera
� Limits in-between drawing

� Uses a preorder traversal
� Draws a parent node first
� Draws children in order
� Parent acts as background

Rendering a Scene is Easy
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� Sprites = textured triangles
� Gather all sprite vertices
� Make one list of triangles
� Send them to GPU at once

� But stall on texture change
� Reorder data on texture
� Draw texture all at once
� Limits texture switches
� Safe if there is no overlap

� Hence the name!

How Does a SpriteBatch Work?
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� SpriteBatch defers to Scene
� Scene determines order
� Nec. because of recursion

� Give hints to the Scene
� Give each child a z-value
� Ties are permitted
� sortZOrder() sorts tree
� Can make this automatic

� Controls texture switching
� One texture = one z-value
� Reduces it to one draw call

Optimizing Performance: zOrder

Level 1
Level 0



� SpriteBatch defers to Scene
� Scene determines order
� Nec. because of recursion

� Give hints to the Scene
� Give each child a z-value
� Ties are permitted
� sortZOrder() sorts tree
� Can make this automatic

� Controls texture switching
� One texture = one z-value
� Reduces it to one draw call

Optimizing Performance: zOrder

Level 1
Level 0

But limited to siblings!
High priority refactor.



� Idea: Never switch textures
� Film strip is many images 
� We can draw part of texture
� One texture for everything?
� Called a texture atlas

� Disadvantages?
� Cannot tile textures
� Can be tricky to pack

� Ideal for interface design
� Images for UX widgets
� Often small and compact

Optimizing Performance: Atlases



� CUGL has many node types
� AnimationNode (animation)
� WireNode (wireframes)
� PolygonNode (tiled shapes)
� PathNode (lines with width)
� NinePatch (UI elements)
� Label (text)

� Learn them outside of class
� Read the documentation
� Play with the demos

Specialized Nodes

All one
graph node



JSON Language for Scene Graphs
"textfield" : {

"type"        : "Node",            
"format" : {  "type" : "Anchored" },              
"children"  : {                

"action"  : {                    
"type"   : "TextField",  
"data" : {                        

"font"       : "felt",
"text" : "Edit me", 
"size"       : [600,80],                   
"anchor"  : [0.5,0.5]                    

}, 
"layout" : {                        

"x_anchor" : "center",                       
"y_anchor" : "top"

}

Node
name

Node
type

Layout
manager

Child
nodes



JSON Language for Scene Graphs
"textfield" : {

"type"        : "Node",            
"format" : {  "type" : "Anchored" },              
"children"  : {                

"action"  : {                    
"type"   : "TextField",  
"data" : {                        
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"text" : "Edit me", 
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"textfield" : {
"type"        : "Node",            
"format" : {  "type" : "Anchored" },              
"children"  : {                

"action"  : {                    
"type"   : "TextField",  
"data" : {                        

"font"       : "felt",
"text" : "Edit me", 
"size"       : [600,80],                   
"anchor"  : [0.5,0.5]                    

}, 
"layout" : {                        

"x_anchor" : "center",                       
"y_anchor" : "top"

}

Each node has
� Type
� Format
� Data
� Children
� Layout

JSON Language for Scene Graphs



Widget

"variables" : {
"image" : ["children","up","data","texture"]

},
"contents" : {

"type" : "Button",
"data" : {

"upnode" : "up", "visible" : false,
"anchor" : [0.5,0.5], "scale" : 0.8

},
"children" : {

"up" : {
"type" : "Image",
"data" : { "texture" : "play”}

}}}

Widgets: JSON Templates

JSON
"widgets": {

"mybutton" : "widgets/mybutton.json",
},
"scene2s": {

"thescene" : {
"type" : "Node",
"format" : { "type" : "Anchored" },
"children" : {

"button" : {
"type" : "Widget",
"data" : {

"key" : "mybutton",
"variables" : { "image":"altplay" }

},
"layout" : { "x_anchor" : "center" }

}}}
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Widget is
a subtree

Replace
w/ subtree



Widget

"variables" : {
"image" : ["children","up","data","texture"]

},
"contents" : {

"type" : "Button",
"data" : {

"upnode" : "up", "visible" : false,
"anchor" : [0.5,0.5], "scale" : 0.8

},
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"up" : {
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Widgets: JSON Templates

JSON
"widgets": {

"mybutton" : "widgets/mybutton.json",
},
"scene2s": {

"thescene" : {
"type" : "Node",
"format" : { "type" : "Anchored" },
"children" : {
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Full path to 
value to change

Change the
variable

Provide the
layout



The Problem: Physics



The Problem: Physics

How big is
that scene graph?



draw()

� Overridden to render node
� Only node, not children
� The render method (do not 

touch) handles children

� Drawing data is cached
� The vertex positions
� The vertex colors
� The texture coordinates

� Cache passed to SpriteBatch

Defining Custom Nodes

generateRenderData()

� Overridden to update cache
� Change vertex positions
� Change vertex colors
� Change texture coordinates

� Only needed for reshaping
� Transforms for movement
� Called infrequently

� Optimizes the render pass



The draw() Method
void CustomNode::draw(const std::shared_ptr<SpriteBatch>& batch,   

const Mat4& transform, Color4 tint) {

if (!_rendered) {
generateRenderData();

} 

batch->setColor(tint);
batch->setTexture(_texture);
batch->setBlendEquation(_blendEquation);
batch->setBlendFunc(_srcFactor, _dstFactor);

batch->fill(_vertices, _vertsize, 0,
_indices,  _indxsize, 0,
transform);

}



The draw() Method
void CustomNode::draw(const std::shared_ptr<SpriteBatch>& batch,   

const Mat4& transform, Color4 tint) {

if (!_rendered) {
generateRenderData();

} 

batch->setColor(tint);
batch->setTexture(_texture);
batch->setBlendEquation(_blendEquation);
batch->setBlendFunc(_srcFactor, _dstFactor);

batch->fill(_vertices, _vertsize, 0,
_indices,  _indxsize, 0,
transform);

}

Computed from 
parent (+camera)

Computed from 
parent (+scene)

The Render Data



Summary

� CUGL tries to leverage ideas from 3152
� Top level class works like the classic GDXRoot
� Design architecture to switch between modes
� Use SpriteBatch class to draw textures in 2D.

� New idea is using scene graphs to draw
� Tree of nodes with relative coordinate systems
� Makes touch input easier to process
� Also helps with animation (later)

� New JSON language makes design easier


