the . « e e g
gamedesigninitiative
at cornell university
]

Architecture
Revisited

Recall: The Game Loop

60 times/s

16.7 ms

The Game Loop

v

® Almost everything is in loop
® Except asynchronous actions

® [s enough for simple games

® How do we organize this loop?
® Do not want spaghetti code

® Distribute over programmers

Model-View-Controller Pattern

* Updates model in methods of

response to events
/ ®* Updates view with

model changes
Model —

Defines/manages
the program data = <-----=---oeeeo—-

Controller Calls the J

Responds to the
controller requests

The Game Loop and MVC

® Model: The game state
® Value of game resources
® [.ocation of game objects

® View: The draw phase

® Rendering commands only

® Major computation 1n upc

ate

® Controller: The update p!
® Alters the game state

14SC

® Vast majority of your code

Upda

te

B

Structure of a CUGL Application

Structure of a CUGL Application

(future lecture)

Memory policy]

Structure of a CUGL Application

Dormant I
~
~
N

~

Structure of a CUGL Application

[Controllw

The Application Class

onStartup() update()

® Handles the game assets ® (alled each animation frame
® Attaches the asset loaders

® Manages gameplay
® [oads immediate assets

® (Converts input to actions
® Starts any global singletons ® Processes NPC behavior
® Example: AudioEngine ® Resolves physics

® Resolves other interactions
® (reates any player modes

® But does not launch yet ® Updates the scene graph
® Waits for assets to load ® Transforms nodes
® [.ike GDXRoot in 3152 ® FEnables/disables nodes

The Application Class

onStartup()

update()

® Handles the game assets

® Attaches the asset loaders

® | oads immediate assets

~praycr modes
® But does not launch yer

® Waits for assets to load
® [.ike GDXRoot in 3152

® (alled each animation frame

® Manages gameplay

er interactions

® Updates the scene graph

® Transforms nodes

® FEnables/disables nodes

Application Structure

Scene
Controller
[Ownership
Subcontroller ‘ Subcontroller \
\ /

\

m

Collaboratlon

Application Structure

Scene ® (Collaboration
Controller

® Must import class/interface

® [nstantiates an object OR

[Owner@
® (alls the objects methods
‘ Subcontroll ¢ Ownership

® [nstantiated the object

® Responsible for disposal

® Superset of collaboration

-

Collaboration

./

Avoid Cyclic Collaboration

Controller

collaborates with

collaborates
with

collaborates with

Scene Structure

Scene
Controller

Subcontroller ‘ Subcontroller \

CUGL Views: Scene Graphs

CUGL Views: Scene Graphs

CUGL Views: Scene Graphs

Model-Controller Separation (Standard)

Model Controller
® Store/retrieve object data ® Process user input
® Limit access (getter/setter) ® Determine action for input
® Preserve any invariants ® Example: mouse, gamepad
® Only affects this object ® (all action in the model

® Implements object logic

® (Complex actions on model .
P Traditional controllers

® May affect multiple models 1 1 e
4 — are “lightweight

® Example: attack, collide

Classic Software Problem: Extensibility

® Given: Class with some base functionality
® Might be provided in the language API
® Might be provided in 3™ party software

® Goal: Object with additional functionality
® (lassic solution 1s to subclass original class first

® Example: Extending GUI widgets (e.g. Java)

® But subclassing does not always work...

® How do you extend a Singleton object?

Problem with Subclassing

® (Games have lots of classes
® FEach game entity is different

® Needs its own functionality
(e.g. object methods)

® Want to avoid redundancies

® Makes code hard to change

® Common source of bugs Human § Human
Warrior Archer
A

® Might be tempted to subclass

Orc Orc
Warrior Archer
Y A

Redundant Behavior

® Common behavior in parents

® Specific behavior in children

Problem with Subclassing

® Games have lots of classes

® Each game entity is different @
® Needs its own functionality

(e.g. object methods)

. . Warrior
® Want to avoid redundancies

® Makes code hard to change

® Common source of bugs Human Orc
Warrior [§ Warrior
A

® Might be tempted to subclass

Human Orc
Archer Archer
Y A

Redundant Behavior

® Common behavior in parents

® Specific behavior in children

Model-Controller Separation (Standard)

Model

® Store/retrieve object data

® Limit access (getter/setter)

® Preserve any invariants

® Only affects this object

C Implements object logic \ Human [Human Orc Orc
Warrior Archer Warrior Archer

® Complex actions on model

® May affect multiple models

e Example: attack, collide P Redundant Behavior

Model-Controller Separation (Alternate)

Model Controller
® Store/retrieve object data ® Process game actions
® Limit access (getter/setter) ® Determine from input or Al
® Preserve any invariants ® Find all objects effected
® Only affects this object ® Apply action to objects
® Process interactions
. o
In this cas e, Mo dels Look at current game state
are li ghtwei ght ® Look for “triggering” event

® Apply interaction outcome

Model-Controller Separation (Alternate)

Model Controller

® Store/retrieve object data ® Process game actions
® Limit access (getter/setter) ® Determine from input or Al

® Pr cted
. Motivation for the

Entity-Component Model

v salne state

B A /UUVUIN Al vull vill

In this case, models
are lightweight ® Look for “triggering” event

® Apply interaction outcome

Does Not Completely Solve Problem

® Code correctness a concern
® Methods have specifications

® Must use according to spec

® Check correctness via typing
® Find methods in object class
¢ Example: orc.flee()
® Check type of parameters

¢ Example: force_to_flee(ore)

® Logical association with type

® Even if not part of class

Issues with the OO Paradigm

® (Object-oriented programming is very noun-centric
® All code must be organized into classes

® Polymorphism determines capability via type

® OO became popular with traditional MV C pattern
® Widget libraries are nouns implementing view
® Data structures (e.g. CS 2110) are all nouns

® (Controllers are not necessarily nouns, but lightweight

® Games, interactive media break this paradigm
® View i1s animation (process) oriented, not widget oriented

® Actions/capabilities only loosely connected to entities

Programming and Parts of Speech

Classes/Types are Nouns Actions are Verbs

® Methods have verb names ® (apability of a game object

® Method calls are sentences ® (Often just a simple function
® subject.verb(object) ® damage(object)
® gsubject.verb() ® collide(object1,object])

® (lasses related by is-a ® Relates to objects via can-it
® Indicates class a subclass of ® Example: Orc can-it attack
® Example: String is-a Object ® Not necessarily tied to class

| | . : L
® Objects are class instances Example: swapping items

Duck Typing: Reaction to This Issue

e “Type” determined by its Java:

® Names of its methods public boolean equals(Object h) {

: : if (I(h instanceof Person
® Names of its properties (()1

® [fit “quacks like a duck™

return false;}

Person ob= (Person)h;

° Python has this ca p abil ity return name.equals(ob.name);
® hasattr(<object>,<string>) }
® True if object has attribute Python:
or method of that name def __eq (self,ob):
. if (not (hasattr(ob, name’))
® This has many problems - return False

® (Correctness is a nightm are return (self.name == ob.name)

Duck Typing: Reaction to This Issue

® “Type” determined by its Java:
® Names of its methods public boolean equals(Object h) {
e Names| ® What do we really want? frson) {
o [fit“q) @ Capabilities over properties b
e Python hi ® Extend capabilities without l(ob.name);
e hasattrl necessarily changing type
o Trueifl © Without using new languages
ormeth o We use software patterns
|name’))

® This has THany ProvIcmIs - return False

® (Correctness is a nightm are return (self.name == ob.name)

Possible Solution; Decorator Pattern

Decorator Original > Original
Ob J ect Functionality Ob J ect

Java |/O Example

InputStream input = System.in;
ﬁconsole input }

Reader reader = new InputStreamReader(input);

ma@rs easy to read }

BufferedReader buffer = new BufferedReader(reader);

mle line at a time }
Most of java.io

works this way

Alternate Solution: Delegation Pattern

Original
Object

Reference to Dele gate
delegate > Obj ect 1

Forward
Request

Inversion of the Decorator Pattern

Alternate Solution: Delegation Pattern

Original
Object

Reference to Dele gate
delegate > .
. Object 2

Forward
Request

Inversion of the Decorator Pattern

Example: Sort Algorithms

public class SortableArray extends ArrayList {

private Sorter sorter = nemo; new QuickSorter();

public void setSorter(Sorter s) { sorter =s; }

public void sort() {

Object[] list = toArray(); public interface Sorter {
sorter.sort(list); public void sort(Object[] list);
clear(); }

for (o:list) { add(o); }

Comparison of Approaches

Decoration

Delegation

Pattern applies to decorator

® (Given the original object

® Requests through decorator

Monolithic solution
® Decorator has all methods

® “Layer” for more methods
(e.g. Java I/O classes)

Works on any object/class

® Applies to original object
® You designed object class

® All requests through object

® Modular solution

® Each method can have own
delegate implementation

® Like higher-order functions

® Limited to classes you make

The Subclass Problem Revisited

Delegates?

Orc

Human

Warrior

Human Human Orc Orc
Warrior Archer Warrior Archer
A A

Y

Redundant Behavior

The Subclass Problem Revisited

Delegates?

Will see how to

do with Templates

Human
Warrior

A A

Redundant Behavior

Summary

® CUGL supports the traditional game loop
® Has root controller for primary app control
® Root separates into update/draw steps

® CUGL view 1s handled in scene graphs
® Scene 1s a game mode or logical unit
® Scene graph 1s hierarchical arrangement of scene

® Games naturally fit a specialized MV C pattern
® Want lightweight models (mainly for serialization)
® Want heavyweight controllers for the game loop
® Component-based design better models actions

