
gamedesigninitiative
at cornell university

the

Networking



Consistency

� Do our games agree?
� Where do I see objects?

� Where do you see them?

� Who is authoritative?

� How to force agreement?
� Do I wait for everyone?

� Do I guess and fix errors?

CS 3152: Game Networking Issues

Security

� What cheats are possible?
� View hidden data

� Enter invalid states

� Improve player skill

� How do we cheat proof?
� Technical solutions?

� Community policing?



Consistency

� Do our games agree?
� Where do I see objects?

� Where do you see them?

� Who is authoritative?

� How to force agreement?
� Do I wait for everyone?

� Do I guess and fix errors?

CS 3152: Game Networking Issues

Security

� What cheats are possible?
� View hidden data

� Enter invalid states

� Improve player skill

� How do we cheat proof?
� Technical solutions?

� Community policing?

Not going to cover
Today’s Lecture



� Latency is root of all evil
� Local actions are instant

� Network actions are slow

� Example: targeting
� Want “geometric fidelity”

� Fire a weapon along ray

� Hits first object on ray

� But movement is fast!

The Issue of Consistency

Player 1 Player 2

Fire

Fire

Move

Movetim
e

How to tell these cases apart?



� State: all objects in game
� Local State: on a machine
� World State: “true” state

� Where is the world state? 
� On a single machine?
� Union of local states?

� States may be inconsistent
� Local disagrees with world 
� Is this really a problem?
� What can we do about it?

World State vs. Local State

Local
State

Local
State

World State



Centralized Authority

� One computer is authority
� Stores the full world state
� Local states must match it

� Often call this the “server”

The Question of Authority

Distributed Authority

� Authority is divided up
� Each object has an owner
� Must match if not owner

� Classically call this “P2P”

Local
State

Local
State

World
State

(Authority) Local
Authority

Local
Authority

World State



Authority and Latency

� Lack of authority enforces a delay
� Only draw what authority tells you
� Requires round trip from your input
� Round-trip time (RTT) can be > 200 ms

� This makes the game less responsive
� Need some way to compensate for this

Sample Input
Render Screen

Process Input
Compute State

Client Authority



Authority and Latency

� Lack of authority enforces a delay
� Only draw what authority tells you
� Requires round trip from your input
� Round-trip time (RTT) can be > 200 ms

� This makes the game less responsive
� Need some way to compensate for this

Sample Input
Render Screen

Process Input
Compute State

Client Authority

Need to understand basics before solving this



Matchmaking

� Service to find other players
� Groups players in a session
� But does not run session

� Why make your own?
� Control user accounts
� Implement skill ladders

� 3rd party services common
� Apple GameCenter
� GooglePlay API
� Unity’s server classes

Networking Breaks into Two Phases

Game Session

� Service to run the core game
� Synchronizes player state
� Supports minor adds/drops

� Why make your own?
� Must tailor to your game
� You often have no choice

� Limited 3rd party services
� Often just a networking API
� For limited class of games
� Examples: Unity, Unreal



Matchmaking

� Service to find other players
� Groups players in a session
� But does not run session

� Why make your own?
� Control user accounts
� Implement skill ladders

� 3rd party services common
� Apple GameCenter
� GooglePlay API
� Unity’s server classes

Networking Breaks into Two Phases

Game Session

� Service to run the core game
� Synchronizes player state
� Supports minor adds/drops

� Why make your own?
� Must tailor to your game
� You often have no choice

� Limited 3rd party services
� Often just a networking API
� For limited class of games
� Examples: Unity, Unreal

Our main focus
Simplify if possible



� Uses the GameKit library
� Supports multiplayer games
� Also leaderboards/achievements
� Not a full game engine

� Very simple matchmaking
� Specify the number of players
� Invite anyone on friends list
� Invite anyone in BlueTooth range
� Or allow Apple to hook you up

� Can be simultaneous with session
� Add more players if slots available

Matchmaking: Apple/iOS



Real Time

� You handle authority
� Allows variety of strategies
� Focus of rest of lecture

� GKMatchmakerViewController
� Classic matchmaking UI
� You add a listener/delegate

� GKMatchmaker
� Controller with no UI
� Allows a custom view

iOS Matchmaking Classes

Turn Based

� Apple handles authority
� Stores state on Apple server

� GKTurnBasedMatchmaker-
ViewController
� Classic matchmaking UI
� You add a listener/delegate

� GKTurnBasedMatch
� Controller with no UI
� Allows a custom view



Real Time

� You handle authority
� Allows variety of strategies
� Focus of rest of lecture

� GKMatchmakerViewController
� Classic matchmaking UI
� You add a listener/delegate

� GKMatchmaker
� Controller with no UI
� Allows a custom view

iOS Matchmaking Classes

Turn Based

� Apple handles authority
� Stores state on Apple server

� GKTurnBasedMatchmaker-
ViewController
� Classic matchmaking UI
� You add a listener/delegate

� GKTurnBasedMatch
� Controller with no UI
� Allows a custom view

Will require you to use Objective-C++



Advantages of a Custom UI

Key if mixing AI 
and multiplayer



� Part of the Google Play API
� Supported multiplayer games
� Also leaderboards/achievements
� Also some minor game analytics

� Worked exactly like GameKit
� Choose real-time or turn-based
� Use Google UI or a custom one
� Only differed in terminology

� Had a native C++ API
� No need for Java or JNI
� Plug it straight in CUGL

Android USED To Have This Too 



� Part of the Google Play API
� Supported multiplayer games
� Also leaderboards/achievements
� Also some minor game analytics

� Worked exactly like GameKit
� Choose real-time or turn-based
� Use Google UI or a custom one
� Only differed in terminology

� Had a native C++ API
� No need for Java or JNI
� Plug it straight in CUGL

Android USED To Have This Too 

Google Killed It!



Firebase

� Restful, realtime database
� Simple syncing across apps
� Makes consistency easy

� Can solve both issues
� Groups players in matches
� Sync state during session

� Used by Family Style
� But server costs expensive!
� Cheaper to just matchmake

Modern Google Alternatives

Open Match

� Open source matchmaker
� Runs on Kubernetes
� Instance just for your game

� No game session logic
� You still have to do this
� But that is normally the case

� Made by Google/Unity
� The future of Unity netcode
� But is engine agnostic



� You can make your own
� Hard part is the server
� Need a fixed IP address
� IP is coded into the game

� But can leverage cloud tech
� Write a Docker container
� Or just use Firebase

� Benefit: cross-platform play
� Must for iOS-Android play
� Reason for Open Match

Custom Matchmaking

Matchmaker



Custom Matchmaking

Matchmaker

Client Client

Ask for Game Session



Custom Matchmaking

Matchmaker

Client Client

Respond with Group



Custom Matchmaking

Matchmaker
Reconnect if Dropped

Game Session



Matchmaking in Family Style



Why Not Just Direct IPs?

� Idea: Make one game “the server”
� Player starts up server instance
� Player writes down their IP address
� Everyone else types in that IP address

� Problem: Network Address Translation
� Most networks use NAT to attach many devices
� This means IP addresses on NAT are not real

� Mathmaker provides NAT punchthrough!
� Reason why you keep it open for reconnects



Game Session: Part of Core Loop

Update

Update

Draw

Client Authority



Decoupling the Network Loop

Update

Local
Update

Draw

Client Authority

Network
Update



Decoupling the Network Loop

Update

Local
Update

Draw

Client Authority

Network
Update

Smooth local
animation

Possibly slower
tick rate (10 fps)

Should match 
the client rate



� Animation is “buying time”
� Looks fast and responsive
� But no real change to state
� Animation done at update

� Examples:
� Players wait for elevator 
� Teleportation takes time 
� Many hits needed per kill 
� Bullets have flying time 
� Inertia limits movement

Decoupling Enables Latency Masking



� Server developer provides
� Acts as central authority
� May be several servers
� May use cloud services

� Pros:
� Could be real computer
� More power/responsiveness
� No player has advantage

� Cons:
� Lag if players not nearby
� Expensive to maintain

Game Session: Dedicated Server

Server

Client

Client

Client

Client Client

Client

Client Client



Game Session: AdHoc Server

Client

Client

Client

Client Client

Client

Client Client

Host� One client acts as host
� Acts as central authority
� Chosen by matchmaker
� But may change in session

� Pros:
� Cheap long-term solution
� Can group clients spatially

� Cons:
� Server is a mobile device
� Host often has advantages
� Must migrate if host is lost



Game Session: AdHoc Server

Client

Client

Client

Client Client

Client

Client Client

Host� One client acts as host
� Acts as central authority
� Chosen by matchmaker
� But may change in session

� Pros:
� Cheap long-term solution
� Can group clients spatially

� Cons:
� Server is a mobile device
� Host often has advantages
� Must migrate if host is lost

Predominant
commercial 
architecture



� Authority is distributed
� Each client owns part of state
� Special algorithms for conflict
� Coordinator for adds/drops

� Pros:
� No lag on owned objects
� Lag limited to “attacks”
� Same advantages as adhoc

� Cons:
� Incredibly hard to implement
� High networking bandwidth

Game Session: True P2P

Client

Client

Client

Client Client

Client

Client Client

Coordinator



� Authority is distributed
� Each client owns part of state
� Special algorithms for conflict
� Coordinator for adds/drops

� Pros:
� No lag on owned objects
� Lag limited to “attacks”
� Same advantages as adhoc

� Cons:
� Incredibly hard to implement
� High networking bandwidth

Game Session: True P2P

Client

Client

Client

Client Client

Client

Client Client

Coordinator

Almost no-one 
does this outside

academia



Game Session: True P2P



Game Session: True P2P

Melee is easy to 
latency mask!



� Clients must be synchronized
� Ensure they have same state
� … or differences do not mattter

� Synchronization != authority
� Authority determines true state
� Not how clients updated
� Or when clients are updated

� Major concept in networking
� Lots of complicated algorithms
� Also a patent mindfield
� Take distributed systems course

Synchronization Algorithms

Player 1 Player 2

Fire

Fire

Move

Movetim
e Move

Move?

Fire?

Fire



Pessimistic

� Everyone sees same world
� Ensure local = world state 
� Forces a drawing delay

� Best on fast networks
� Local LAN play
� Bluetooth proximity

� Or games with limited input
� Real time strategy
� Simulation games

Synchronization Algorithms

Optimistic

� Allow some world drift
� Best guess + roll back
� Fix mistakes if needed

� Works on any network
� Lag errors can be fixed
� But fixes may be distracting

� Works great for shooters
� Player controls only avatar
� All else approximated



Pessimistic

� Everyone sees same world
� Ensure local = world state 
� Forces a drawing delay

� Best on fast networks
� Local LAN play
� Bluetooth proximity

� Or games with limited input
� Real time strategy
� Simulation games

Synchronization Algorithms

Optimistic

� Allow some world drift
� Best guess + roll back
� Fix mistakes if needed

� Works on any network
� Lag errors can be fixed
� But fixes may be distracting

� Works great for shooters
� Player controls only avatar
� All else approximated

Also great for 
distributed authority



� Algorithm: play by “turns”
� Players send turn actions
� Even if no action was taken 
� Wait for response to render

� Problems
� Long Internet latency
� Variable latencies (jitter)
� Speed set by slowest player
� What if moves are lost?

� More common in LAN days

Pessimistic: Lock-Step Synchronization

Player 1 Player 2

tim
e

Synch &
Render



� Algorithm: turns w/ timeout
� Often timeout after 200 ms
� But can be adapted to RTT
� All moves are buffered
� Executed at end of next turn 

� Problems
� Variable latencies (> a turn)
� Speed set by slowest player
� What if moves are lost?

� Used in classic RTS games

Pessimistic: Bucket Synchronization

Player 1 Player 2

tim
e

Synch &
Render

X
loss

Multiple
Moves 
Possible



� Algorithm: turns w/ timeout
� Often timeout after 200 ms
� But can be adapted to RTT
� All moves are buffered
� Executed at end of next turn 

� Problems
� Variable latencies (> a turn)
� Speed set by slowest player
� What if moves are lost?

� Used in classic RTS games

Pessimistic: Bucket Synchronization



Optimistic: Personal State

Current
Network
State

Approx.
Current
State

Local
Update

Draw

Network
Update

Server
Update

Unconfirmed
player actions

Previous
Network
State

Current
Network
State

True
State

State updates

Player action
confirmations



Optimistic: Opponent State

Local
Update

Draw

Network
Update

Server
Update

Current
Network
State

Approx.
Current
State

Simulate
assuming
no actions

Previous
Network
State

Current
Network
State

True
State

State updates

Opponent
actions



Dead Reckoning

� Assume velocity constant
� Simulate the new position
� Treats like physics object

� Generalize to other actions

Advantages of Sending Actions

Error Smoothing

� Can interpolate late actions
� Create simulation for action
� Avg into original simulation

� Continue until converge

Lo
st

Extrapolate



The Perils of Error Correction



Physics: Challenge of Synchronization

� Deterministic bi-simulation is very hard
� Physics engines have randomness (not Box2D)
� Not all architectures treat floats the same

� Need to mix interpolation with snapshots
� Like error correction in optimistic concern
� Run simulation forward from snapshots



Physics: Challenge of Synchronization

� Deterministic bi-simulation is very hard
� Physics engines have randomness (not Box2D)
� Not all architectures treat floats the same

� Need to mix interpolation with snapshots
� Like error correction in optimistic concern
� Run simulation forward from snapshots

See today’s reading



Physics: Challenge of Authority

� Distributed authority is very difficult
� Authority naturally maps to player actions
� Physics is a set of interactions

� Who owns an uncontrolled physics object?
� Gaffer: The client that set in motion
� Collisions act as a form of “authority tag”



Summary

� Consistency: local state agrees with world state
� Caused by latency; takes time for action to be sent
� Requires complex solutions since must draw now!

� Authority is how we measure world state
� Almost all games use a centralized authority
� Distributed authority is beyond scope of this class

� Synchronization is how we ensure consistency
� Pessimistic synchronization adds a sizeable input delay
� Optimistic synchronization requires a lot of overhead


