the . « e e g
gamedesigninitiative
at cornell university
]

Networking

CS 3152: Game Networking Issues

Consistency Security
® Do our games agree? ® What cheats are possible?
® Where do I see objects? ® View hidden data
® Where do you see them? ® Enter invalid states
® Who is authoritative? ® Improve player skill
® How to force agreement? ® How do we cheat proof?
® Do I wait for everyone? ® Technical solutions?

® Do I guess and fix errors? ® Community policing?

CS 3152: Game Networking Issues

Consistency Security
® Do our games agree? ® What cheats are possible?
® Where do I see objects? ® View hidden data

® Where do= ® [Enter invelas

® RHJWw W Torce agreement?
® Do I wait for everyone? ® Technical solutions?

® Do I guess and fix errors? ® Community policing?

The Issue of Consistency

® Latency 1s root of all evil

® J.ocal actions are instant Plaer 1 | river?
® Network actions are slow Fire Move

® Example: targeting
® Want “geometric fidelity” Move

Fire
® Fire a weapon along ray

<«<—— time

® Hits first object on ray

® But movement is fast! How to tell these cases apart?

World State vs

. Local State

® State: all objects in game
® [ocal State: on a machine

® World State: “true” state

® [Where 1s the world state?
® On a single machine?

® Union of local states?

® States may be inconsistent
® Local disagrees with world
® [s this really a problem?

® What can we do about it?

World State

A

4

The Question of Authority

Centralized Authority Distributed Authority
® One computer 1s authority ® Authority is divided up

® Stores the full world state ® Each object has an owner

® [ocal states must match it ® Must match if not owner

® Often call this the “server” ® (lassically call this “P2P”

World State
World

State

(Authority)

Local Local

Authority Authority

Authority and Latency

Client Authority

p—

Sample Input
Render Screen

® Lack of authority enforces a delay

Process Input
Compute State

® Only draw what authority tells you
® Requires round trip from your input
® Round-trip time (RTT) can be > 200 ms

® This makes the game less responsive

® Need some way to compensate for this

Authority and Latency

Client Authority

p—

Sample Input
Render Screen

® Lack of authority enforces a delay

Process Input
Compute State

® Only draw what authority tells you
. am1‘: . .

1 olving thD
'@eed to understand basics before s

® This makes the game less responsive

® Need some way to compensate for this

Networking Breaks into Two Phases

Matchmaking Game Session

® Service to find other players ® Service to run the core game

® Groups players in a session ® Synchronizes player state

® But does not run session ® Supports minor adds/drops
® Why make your own? ® Why make your own?

® (Control user accounts ® Must tailor to your game

® Implement skill ladders ® You often have no choice
® 3rd party services common ® Limited 3" party services

® Apple GameCenter ® Often just a networking API

® GooglePlay API ® For limited class of games

® Unity’s server classes ® Examples: Unity, Unreal

Networking Breaks into Two Phases

Matchmaking Game Session

® Service to find other players ® Service to run the core game

® Groups players in a session ® Synchronizes player state
® But does not run session ® Supports minor adds/drops

® 3rd party services common ® Limited 3™ party services
® Apple GameCenter ® (Often just a networking API
® GooglePlay API ® For limited class of games

® Unity’s server classes ® Examples: Unity, Unreal

Matchmaking: Apple/iOS

® Uses the GameKit library
® Supports multiplayer games
® Also leaderboards/achievements

® Not a full game engine

® Very simple matchmaking
® Specify the number of players

® [nvite anyone on friends list

® [nvite anyone in BlueTooth range

® Or allow Apple to hook you up

® (Can be simultaneous with session

® Add more players if slots available

I0S Matchmaking Classes

Real Time Turn Based
® You handle authority ® Apple handles authority
® Allows variety of strategies ® Stores state on Apple server

® Focus of rest of lecture ® GKTurnBasedMatchmaker-

® (KMatchmakerViewController ViewController

® (lassic matchmaking Ul ® Classic matchmaking Ul

® You add a listener/delegate ® You add a listener/delegate
e (KMatchmaker ® GKTurnBasedMatch

® (ontroller with no Ul ® (Controller with no Ul

® Allows a custom view ® Allows a custom view

I0S Matchmaking Classes

Real Time Turn Based
® You handle authority ® Apple handles authority
® Allows variety of strategies ® Stores state on Apple server

® Focus of rest of lecture ® GKTurnBasedMatchmaker-

® GKMatchmakerViewContr :
® (la Objectlve—C_H— ng Ul

e Yo Tou auu a listener/delegate

e (KMatchmaker ® (GKTurnBasedMatch

® (Controller with no Ul ® Controller with no Ul

® Allows a custom view ® Allows a custom view

Advantages of a Custom Ul

Choose who's playing:

| Key if mixing Al
and multiplayer

Android USED To Have This Too

® Part of the Google Play API

® Supported multiplayer games
® Also leaderboards/achievements

® Also some minor game analytics

® Worked exactly like GameKit

® (Choose real-time or turn-based
® Use Google Ul or a custom one

® Only differed in terminology

® Had a native C++ API
® No need for Java or JNI
® Plug it straight in CUGL

Android USED To Have This Too

® Part of the Google Play API

® Supported multiplayer games

® Also leaderboards/achievements

® Also some minor game analiziees

® Only diftered in terminology

® Had a native C++ API
® No need for Java or JNI
® Plug it straight in CUGL

Modern Google Alternatives

Firebase Open Match

® Restful, realtime database ® Open source matchmaker

® Simple syncing across apps ® Runs on Kubernetes

® Makes consistency easy ® Instance just for your game
® (Can solve both issues ® No game session logic

® Groups players in matches ® You still have to do this

® Sync state during session ® But that is normally the case
® Used by Family Style ® Made by Google/Unity

® But server costs expensive! ® The future of Unity netcode

® (Cheaper to just matchmake ® But is engine agnostic

Custom Matchmaking

® You can make your own

Matchmaker |

® Hard part 1s the server
® Need a fixed IP address

® [P is coded into the game

® But can leverage cloud tech
® Write a Docker container

® Or just use Firebase

® Benefit: cross-platform play
® Must for 10S-Android play
® Reason for Open Match

Custom Matchmaking

Ask for Game Session

Client Client

Custom Matchmaking

Respond with Group

Client Client

Custom Matchmaking

==
B

Reconnect if Dropped

\ g

Game Session

Matchmaking in Family Style

Why Not Just Direct IPs?

® Idea: Make one game ““the server”
® Player starts up server instance
® Player writes down their IP address
® Everyone else types in that IP address

® Problem: Network Address Translation

® Most networks use NAT to attach many devices
® This means IP addresses on NAT are not real

® Mathmaker provides NAT punchthrough!

® Reason why you keep it open for reconnects

Game Session: Part of Core Loop

Client Authority

|

Decoupling the Network Loop

Client

Authority

—T
|

Decoupling the Network Loop

Client Authority

C k=l
)

Should match
the client rate

Possibly slower
tick rate (10 fps)

Smooth local
animation

Decoupling Enables Latency Masking

® Animation is “buying time” Network Options

® [oo0ks fast and reSpOIlSiVG Setting lower latency reduces the

time between when you click the

® But no real change to state

mouse and when a unit responds to

the click.

® Animation done at update

Higher latency increases that time,

but smooths network performance for
o °
Examples. systems with slow or 'lossy' network
® Players wait for elevator zannections.

® Teleportation takes time ® Low latency

[Many hits needed per kill High latency

Extra high latency

® Bullets have flying time

® |nertia limits movement 0K Cancel

Game Session: Dedicated Server

® Server developer provides
® Acts as central authority
® May be several servers

® May use cloud services

® Pros:
® (Could be real computer
® More power/responsiveness

® No player has advantage

® Cons:
® [ag if players not nearby

® Expensive to maintain

Game Session: AdHoc Server

® One client acts as host
® Acts as central authority
® Chosen by matchmaker

® But may change in session

® Pros:

® Cheap long-term solution

® (Can group clients spatially

® Cons:

® Server 1s a mobile device

® Host often has advantages

® Must migrate if host is lost

Game Session: AdHoc Server

® (One client acts as host

Host

® Acts as central authority
® Chosen by matchmaker

® But may change in session

Predominant
commercial

architecture

® Server 1s a mobile device

® Host often has advantages

® Must migrate if host is lost

Game Session: True P2P

® Authority is distributed

® Each client owns part of state

Coordinator

® Special algorithms for conflict

® (Coordinator for adds/drops

® Pros:

® No lag on owned objects
® [ag limited to “attacks”

® Same advantages as adhoc

® Cons:
® [Incredibly hard to implement
® High networking bandwidth

Game Session: True P2P

® Authority 1s distributed

® Each client owns part of state

Coordinator

® Special algorithms for conflict

® (Coordinator for adds/drops

Almost no-one

does this outside
academia

® Cons:

® [Incredibly hard to implement

® High networking bandwidth

Game Session: True P2P

CAPTURED

DEFEND to KEEP controlifor'100
points and points persecondi

~<' -

> PR T
~Renownfgained!:4 > = 250y . : ,,m"ﬂ‘i‘lw'&\‘tﬂ"
= = - - | e
@ QuickChat . K I e

P
-7

~, p

Game Session: True P2P

CAPTURED

DEFEND to KEEP contralifor'100
points and paints per.seconds

" | -
""ﬁ‘ i
> \ A

e
PRy VTS

BRRKilIASS ISt

“Renownipained.:4 2 = A0y . ,‘W’{"‘W‘S‘lw'&“‘:‘f

@ Oui&kihat p \ =

Melee is easy to
latency mask!

Synchronization Algorithms

® (Clients must be synchronized

® Ensure they have same state Player | Player 2
® ... or differences do not mattter
® Synchronization != authority Fire v
ove
® Authority determines true state Fire?
® Not how clients updated 2 Move
® Or when clients are updated & Move
Fire
® Major concept in networking [Move? o
11re
® [ots of complicated algorithms

® Also a patent mindfield

® Take distributed systems course

Synchronization Algorithms

Pessimistic Optimistic
o Everyone sees same world ® Allow some world drift
® Ensure local = world state ® Best guess + roll back
® Forces a drawing delay ® Fix mistakes if needed
® Best on fast networks ® Works on any network
® [ocal LAN play ® [ag errors can be fixed
® Bluetooth proximity ® But fixes may be distracting

® Or games with limited input ~ ® Works great for shooters
® Real time strategy ® Player controls only avatar

® Simulation games ® All else approximated

Synchronization Algorithms

Pessimistic Optimistic

® Everyone sees same world ¢ Allow some world drift

® Ensure local = world state ® Best guess + roll back

® Forces a drawing delay ® Fix mistakes if needed
® Best on fast networks ® Works on any network

® [ocal LAN play ® [ag errors can be fixed

® Bluetooth proximity ® But fixes may be distracting
® Or games with limited input ® Waispaiin v vaa

® Real time strategy

® Simulation games

Pessimistic: Lock-Step Synchronization

® Algorithm: play by “turns”
® Players send turn actions

® Even if no action was taken

® Wait for response to render

® Problems
® [ong Internet latency

® Variable latencies (jitter)

® Speed set by slowest player

<€<—— time

® What if moves are lost?

® More common in LAN days

Pessimistic: Bucket Synchronization

® Algorithm: turns w/ timeout
® Often timeout after 200 ms
® But can be adapted to RTT

® All moves are buffered

® Executed at end of next turn Synch &

Render

® Problems

Multiple

Moves
Possible

® Variable latencies (> a turn)

® Speed set by slowest player

<€«—— time

® What if moves are lost?

® Used in classic RTS games

Pessimistic: Bucket Synchronization

® Algorithm: turns w/ timeout
® Often timeout after 200 ms
® But can be adapted to RTT
® All moves are buffered

® Executed at end of next turn

® Problems
® Variable latencies (> a turn)
® Speed set by slowest player

® What if moves are lost?

® Used in classic RTS games

Optimistic: Personal State

Network
Update

Server
Update

Current Previous
Network Network
State State

State updates
Unconfirmed True

player actions

State

Player action
Current confirmations

Network
State

Optimistic: Opponent State

Network
Update

Server
Update

Current Previous
Network Network
State State

_ State updates
Simulate

assuming
no actions

True

State

Opponent

actions
Current

Network
State

Advantages of Sending Actions

Dead Reckoning Error Smoothing
® Assume velocity constant ® (an interpolate late actions
® Simulate the new position ® (reate simulation for action
® Treats like physics object ® Avg into original simulation
® Generalize to other actions ® Continue until converge

Extrapolate

The Perils of Error Correction

Physics: Challenge of Synchronization

® Deterministic bi-simulation 1s very hard

® Physics engines have randomness (not Box2D)
® Not all architectures treat floats the same

® Need to mix mnterpolation with snapshots
® Like error correction in optimistic concern
® Run simulation forward from snapshots

Physics: Challenge of Synchronization

® Deterministic bi-simulation 1s very hard
® Physics engines have randomness (not PnL”))

® Not all arp*= ding
ee today’s readiil
® Need to C > E——

I

® Like error correction in optimistic concern
® Run simulation forward from snapshots

Physics: Challenge of Authority

® Distributed authority 1s very difficult

® Authority naturally maps to player actions
® Physics 1s a set of interactions

® Who owns an uncontrolled physics object?
® Gaffer: The client that set in motion
® (Collisions act as a form of “authority tag”

Summary

® Consistency: local state agrees with world state

® (Caused by latency; takes time for action to be sent

® Requires complex solutions since must draw now!

® Authority 1s how we measure world state
® Almost all games use a centralized authority

® Distributed authority is beyond scope of this class

® Synchronization 1s how we ensure consistency
® Pessimistic synchronization adds a sizeable input delay

® Optimistic synchronization requires a lot of overhead

