
gamedesigninitiative
at cornell university

the

Memory Management



� Playstation 3
� 256 MB RAM for system
� 256 MB for graphics card

� X-Box 360
� 512 MB RAM (unified)

� Nintendo Wii
� 88 MB RAM (unified)
� 24 MB for graphics card

� iPhone/iPad
� 1 GB RAM (unified)

Gaming Memory (Generation 7)



� Playstation 4
� 8 GB RAM (unified)

� X-Box One
� 12 GB RAM (unified)
� 9 GB for games

� Nintendo Wii-U
� 2 GB RAM (unified)
� 1 GB only for OS

� iPhone/iPad
� 2 GB RAM (unified)

Gaming Memory (Generation 8)



� Playstation 5
� 16 GB RAM (unified)
� Speed 448GB/s

� X-Box Series X
� 16 GB RAM (unified)
� Speed 560-336GB/s

� Nintendo Switch
� 3 GB RAM (unified)
� Speed 25.6 GB/s

� iPhone/iPad
� 6 GB RAM (unified)
� Speed 42.7 GB/s

Gaming Memory (Current Generation)



� Playstation 5
� 16 GB RAM (unified)
� Speed 448GB/s

� X-Box Series X
� 16 GB RAM (unified)
� Speed 560-336GB/s

� Nintendo Switch
� 3 GB RAM (unified)
� Speed 25.6 GB/s

� iPhone/iPad
� 6 GB RAM (unified)
� Speed 42.7 GB/s

Gaming Memory (Current Generation)

You can make 
Switch quality 
games for iOS



� Pixel color is 4 bytes
� 1 byte each for r, b, g, alpha
� More if using HDR color

� Image a 2D array of pixels
� 1280x1024 monitor size
� 5,242,880 bytes ~ 5 MB

� More if using mipmaps
� Graphic card texture feature
� Smaller versions of image
� Cached for performance
� But can double memory use

Memory Usage: Images



� Pixel color is 4 bytes
� 1 byte each for r, b, g, alpha
� More if using HDR color

� Image a 2D array of pixels
� 1280x1024 monitor size
� 5,242,880 bytes ~ 5 MB

� More if using mipmaps
� Graphic card texture feature
� Smaller versions of image
� Cached for performance
� But can double memory use

Memory Usage: Images

Original Image

MipMaps



� Formats often compressed
� JPEG, PNG, GIF
� But not always TIFF

� Must uncompress to show
� Need space to uncompress
� In RAM or graphics card

� Only load when needed
� Loading is primary I/O 

operation in AAA games
� Causes “texture popping”

But My JPEG is only 8 KB!



� Formats often compressed
� JPEG, PNG, GIF
� But not always TIFF

� Must uncompress to show
� Need space to uncompress
� In RAM or graphics card

� Only load when needed
� Loading is primary I/O 

operation in AAA games
� Causes “texture popping”

But My JPEG is only 8 KB!

Sounds have a similar problem



Loading Screens



� How to load assets?
� May have a lot of assets
� May have large assets

� Loading is blocking
� Game stops until done
� Cannot draw or animate

� May need to unload
� Running out of memory
� Free something first

Problems with Asset Loading

Update

Draw

Init



� How to load assets?
� May have a lot of assets
� May have large assets

� Loading is blocking
� Game stops until done
� Cannot draw or animate

� May need to unload
� Running out of memory
� Free something first

Problems with Asset Loading

Update

Draw

Init
Blocks 

all drawing

Blocks 
next frame



Loading Screens

Minimal animation/feedback 

while loading assets



Solution: Asynchronous Loader

Asset
Loader

Specify Asset

Game Thread Second Thread

Update

Draw

Notify done

Update and draw 
simple animations 
until assets loaded



Solution: Asynchronous Loader

Asset
Loader

Specify Asset

Game Thread Second Thread

Update

Draw

Notify done

� Also an asset manager
� Each asset given a key
� Can access asset by key
� Like a map/hash table



Solution: Asynchronous Loader

Asset
Loader

Specify Asset

Game Thread Second Thread

Update

Draw

Notify done

� Not always a good idea
� May need OpenGL utils
� Example: Textures
� Limited to main thread



Alternative: Iterative Loader

Asset Loader

Game Thread Asset Manager

Update

Draw

Initialize

Update

Access



� Uses a time budget
� Give set amount of time
� Do as much as possible
� Stop until next update

� Better for OpenGL 
� Give time to manager
� Animate with remainder
� No resource contention

� LibGDX approach
� But async behind scenes

Alternative: Iterative Loader

Asset Loader

Asset Manager

Initialize

Update

Access



� Uses a time budget
� Give set amount of time
� Do as much as possible
� Stop until next update

� Better for OpenGL 
� Give time to manager
� Animate with remainder
� No resource contention

� LibGDX approach
� But async behind scenes

Alternative: Iterative Loader

Load
Assets

Draw

Update

Budget b

Remaining
time t–b



Assets Beyond Images

� AAA games have a lot of 3D geometry
� Vertices for model polygons
� Physics bodies per polygon
� Scene graphs for organizing this data

� How do we load these things?
� Managers handle built-in asset types
� What if we need to make a custom data type?

� And exactly when do we load these?



AssetManager

� Map from keys to assets
� All access is templated
� assets->get<Texture>("image")
� Keys unique per asset

� Requires attached loaders
� a->attach<T>(load1->getHook());
� a->attach<F>(load2->getHook());

� “Hook” is C++ workaround
� For template subclassing
� Make custom loaders easier

CUGL Approach

Loader

� void read(key, src, cb, async)
� Reads asset from file src
� async indicates if in sep thread
� Callback cb executed when done

� void read(json, cb, async)
� Values key and src now in json
� As are other special properties

� void materialize(key, asset, cb)
� Code to “finish” asset
� Always in the main thread



AssetManager

� Map from keys to assets
� All access is templated
� assets->get<Texture>("image")
� Keys unique per asset

� Requires attached loaders
� a->attach<T>(load1->getHook());
� a->attach<F>(load2->getHook());

� “Hook” is C++ workaround
� For template subclassing
� Make custom loaders easier

CUGL Approach

Loader

� void read(key, src, cb, async)
� Reads asset from file src
� async indicates if in sep thread
� Callback cb executed when done

� void read(json, cb, async)
� Values key and src now in json
� As are other special properties

� void materialize(key, asset, cb)
� Code to “finish” asset
� Always in the main thread

Thread Safe

Main Thread 
Only

Thread Safe



CUGL Approach: Asynchronous

Asset
Loader

addTask(...)
Game Thread Asset Thread

Update

Draw

schedule(…)

Application ThreadPool

Pass closures
as arguments



CUGL Approach: Asynchronous

Asset
Loader

addTask(...)
Game Thread Asset Thread

Update

Draw

schedule(…)

Application ThreadPool

Pass closures
as arguments

Access application singleton
with Application::get()



Assets Beyond Images

� AAA games have a lot of 3D geometry
� Vertices for model polygons
� Physics bodies per polygon
� Scene graphs for organizing this data

� How do we load these things?
� Managers handle built-in asset types
� What if we need to make a custom data type?

� And exactly when do we load these?



Loading and Architecture

Main Application

Scene

NodeModels

Scene

NodeModels

Application
Start-up

Level 
Load

Choice affects design
& ownership of the 

asset manager



Traditional Memory Organization

Program
Data

Heap

Stack

Free 
Space

Program Code
Static Variables

Objects created via new
Allocations with malloc

Function parameters
Local variables
Return values

High Address

Low Address

Dedicated to process.

Consists of machine 
addressable space.

Leverages Virtual Memory



Mobile Memory Organization

Program
Data

Stack

Program
Data

Stack

Program
Data

Stack

Program
Data

Stack

Device Memory

Heap



� Active app takes what it can
� Cannot steal from OS
� OS may suspend apps

� App Suspension
� App quits; memory freed
� Done only as needed

� Suspend apps can recover
� OS allows limited paging
� Page out on suspension
� Page back in on restart

How Do Apps Compete for Memory?



� Active app takes what it can
� Cannot steal from OS
� OS may suspend apps

� App Suspension
� App quits; memory freed
� Done only as needed

� Suspend apps can recover
� OS allows limited paging
� Page out on suspension
� Page back in on restart

How Do Apps Compete for Memory?

You must code this!
Otherwise, data is lost.



� Active
� Running & getting input

� Inactive
� Running, but no input
� Transition to suspended

� Background
� Same as inactive
� But apps can stay here
� Example: Music

� Suspended
� Stopped & Memory freed

State Management in iOS



� Active
� Running & getting input

� Inactive
� Running, but no input
� Transition to suspended

� Background
� Same as inactive
� But apps can stay here
� Example: Music

� Suspended
� Stopped & Memory freed

State Management in iOS

Write handlers to 
process entering, 
leaving each state



iOS State Handling
� applicationDidBecomeActive:

� Your app became (resumed as) the foreground app. 
� Use this to recover memory state.

� applicationWillResignActive:
� Your app will switch to inactive or background. 
� Stop the game loop and page out memory.

� applicationDidEnterBackground:
� Your app is in the background and may be suspended.

� applicationWillEnterForeground:
� Your app is leaving the background, but is not yet active.



Android State Handling

All methods in 
Application class



Android State Handling

All methods in 
Application class

Reload memory



Android State Handling

All methods in 
Application class

Page out
memory



� onStartup()
� Initialized and now active

� onSuspend()
� Sent to background
� Gives you chance to save
� Also time to pause music

� onResume()
� Returns to app to active 
� Allows you to restore state

� onShutdown()
� Stopped & memory freed

CUGL is Simplified Android Model



� onStartup()
� Initialized and now active

� onSuspend()
� Sent to background
� Gives you chance to save
� Also time to pause music

� onResume()
� Returns to app to active 
� Allows you to restore state

� onShutdown()
� Stopped & memory freed

CUGL is Simplified Android Model

� onLowMemory()
� Warning memory is low
� Gives you chance to unload
� Else app will shut down



Memory Organization and Games

Update

Draw

Intra-Frame
Memory

Recovered
each frame

Inter-Frame
Memory

Carries over 
across frame
boundaries



Memory Organization and Games

Update

Draw

Intra-Frame
Memory

Recovered
each frame

Inter-Frame
Memory

Carries over 
across frame
boundaries

Heap or Stack?
Does it matter?



Intra-Frame

� Local computation
� Local variables

(managed by compiler)
� Temporary objects

(not necessarily managed)

� Transient data structures
� Built at the start of update
� Used to process update
� Can be deleted at end

Distinguishing Data Types

Inter-Frame

� Game state
� Model instances
� Controller state
� View state and caches

� Long-term data structures
� Built at start/during frame
� Lasts for multiple frames
� May adjust to data changes



Intra-Frame

� Local computation
� Local variables

(managed by compiler)
� Temporary objects

(not necessarily managed)

� Transient data structures
� Built at the start of update
� Used to process update
� Can be deleted at end

Distinguishing Data Types

Inter-Frame

� Game state
� Model instances
� Controller state
� View state and caches

� Long-term data structures
� Built at start/during frame
� Lasts for multiple frames
� May adjust to data changes

Local Variables
Object Fields



Intra-Frame

� Local computation
� Local variables

(managed by compiler)
� Temporary objects

(not necessarily managed)

� Transient data structures
� Built at the start of update
� Used to process update
� Can be deleted at end

Distinguishing Data Types

Inter-Frame

� Game state
� Model instances
� Controller state
� View state and caches

� Long-term data structures
� Built at start/during frame
� Lasts for multiple frames
� May adjust to data changes

Local Variables
Object Fields

e.g. Collisions
e.g. Pathfinding



Intra-Frame

� Does not need to be paged
� Drop the latest frame
� Restart on frame boundary

� Want size reasonably fixed
� Local variables always are
� Limited # of allocations
� Limit new inside loops

� Often use custom allocator
� GC at frame boundaries

Handling Game Memory

Inter-Frame

� Potential to be paged
� Defines current game state
� May just want level start

� Size is more flexible
� No. of objects is variable
� Subsystems may turn on/off
� User settings may affect

� OS allocator okay, but…
� Recycle with free lists



Intra-Frame

� Does not need to be paged
� Drop the latest frame
� Restart on frame boundary

� Want size reasonably fixed
� Local variables always are
� Limited # of allocations
� Limit new inside loops

� Often use custom allocator
� GC at frame boundaries

Handling Game Memory

Inter-Frame

� Potential to be paged
� Defines current game state
� May just want level start

� Size is more flexible
� No. of objects is variable
� Subsystems may turn on/off
� User settings may affect

� OS allocator okay, but…
� Recycle with free lists

Talked About this in C++ Lesson



� Most game data is spatial
� Only load if player nearby
� Unload as player moves away
� Minimizes memory used

� Arrange memory in cells
� Different from a memory pool
� Track player visibility radius
� Load/unload via outer radius

� Alternative: loading zones
� Elevators and “tight spaces”

Advanced: Spatial Loading



� Most game data is spatial
� Only load if player nearby
� Unload as player moves away
� Minimizes memory used

� Arrange memory in cells
� Different from a memory pool
� Track player visibility radius
� Load/unload via outer radius

� Alternative: loading zones
� Elevators and “tight spaces”

Advanced: Spatial Loading

Visibility
Radius



� Most game data is spatial
� Only load if player nearby
� Unload as player moves away
� Minimizes memory used

� Arrange memory in cells
� Different from a memory pool
� Track player visibility radius
� Load/unload via outer radius

� Alternative: loading zones
� Elevators and “tight spaces”

Advanced: Spatial Loading

Visibility
Radius

Loading
Radius



Spatial Loading in Assassin’s Creed



Implementing Spatial Loading

In RAM

On Disk

� Part of serialization model
� Level/save file has the cells
� Cell addresses in memory
� Load/page on demand

� Sort of like virtual memory
� But paging strategy is spatial



� Not same as virtual memory
� Objects unloaded do not exist
� Do not save state when unload
� Objects loaded are new created

� Can lead to unexpected states
� “Forgetful” NPCs
� Creative Assassin’s Creed kills

� Workaround: Global State
� Track major game conditions
� Example: Guards Alerted
� Use to load objects in standard, 

but appropriate, configurations

Spatial Loading Challenges



Summary

� Memory usage is always an issue in games
� Uncompressed images are quite large
� Particularly a problem on mobile devices

� CUGL supports modular asset loading
� Define a custom loader for your asset class
� Loader has external/main thread components

� Mobile devices must be monitored
� Page out large data when suspended 
� Shut down app when memory is low


