
gamedesigninitiative
at cornell university

the

C++ Overview

Lecture 7

gamedesigninitiative
at cornell university

the

C++ Overview

Lecture 7

gamedesigninitiative
at cornell university

the

So You Think You Know C++

� Most of you are experienced Java programmers
� Both in 2110 and several upper-level courses
�  If you saw C++, was likely in a systems course

� Java was based on C++ syntax
� Marketed as “C++ done right”
�  Similar with some important differences

� This Lecture: an overview of the differences
�  If you are a C++ expert, will be review

C++ Overview 3

gamedesigninitiative
at cornell university

the

So You Think You Know C++

� Most of you are experienced Java programmers
� Both in 2110 and several upper-level courses
�  If you saw C++, was likely in a systems course

� Java was based on C++ syntax
� Marketed as “C++ done right”
�  Similar with some important differences

� This Lecture: an overview of the differences
�  If you are a C++ expert, will be review

C++ Overview 4

All the sample code is online.

Download and play with it.

gamedesigninitiative
at cornell university

the

Java

/* Comments are single or multiline�
 */

// Everything must be in a class�
public class HelloWorld {

 // Application needs a main method�
 public static void main(String arg[]){

 System.out.println("Hello World");

 }

}

C++ Overview 5

Comparing Hello World

C++

/*Comments are single or multiline�
 */

// Nothing is imported by default�
#include <stdio.h>

// Application needs a main FUNCTION�
int main(){

 printf("Hello World");�
 printf("\n"); // Must add newline

 // Must return something�
 return 0;�
}

gamedesigninitiative
at cornell university

the

Java

/* Comments are single or multiline�
 */

// Everything must be in a class�
public class HelloWorld {

 // Application needs a main method�
 public static void main(String arg[]){

 System.out.println("Hello World");

 }

}

C++ Overview 6

Comparing Hello World

C++

/*Comments are single or multiline�
 */

// Nothing is imported by default�
#include <stdio.h>

// Application needs a main FUNCTION�
int main(){

 printf("Hello World");�
 printf("\n"); // Must add newline

 // Must return something�
 return 0;�
}

C-style console.
Similar to CCLog,
used by Cocos2d-x

gamedesigninitiative
at cornell university

the

C++ Overview 7

Biggest Difference: Compilation

Java Process

JAVA CLASS

CLASS

CLASS

CLASS

javac

Compiler

Run the
class file

Loads other classes
as it needs them

gamedesigninitiative
at cornell university

the

C++ Overview 8

Biggest Difference: Compilation

C++ Process

CPP OBJ

OBJ

OBJ

c++

Compiler

Run the
executable

EXE
c++

Linker

gamedesigninitiative
at cornell university

the

All Handled by the IDE

C++ Overview 9

gamedesigninitiative
at cornell university

the

All Handled by the IDE

C++ Overview 10

Command line work
requires a Makefile

gamedesigninitiative
at cornell university

the

�  Need #include for libs
�  But linker adds the libs
�  So what are we including?

�  Function Prototypes
�  Declaration without body
�  Like an interface in Java

�  Prototypes go in .h files
�  Also includes types, classes
�  May have own #includes

/* stringfun.h�
 * Recursive string funcs in CS 1110 �
 */

#ifndef_STRINGFUN_H_�
#define_STRINGFUN_H_

#include <string>

/* True if word a palindrome */�
bool isPalindrome(string word);

/* True if palindrome ignore case */�
bool isLoosePalindrome(string word);

#endif

C++ Overview 11

Separation Requires Header Files

gamedesigninitiative
at cornell university

the

�  Need #include for libs
�  But linker adds the libs
�  So what are we including?

�  Function Prototypes
�  Declaration without body
�  Like an interface in Java

�  Prototypes go in .h files
�  Also includes types, classes
�  May have own #includes

/* stringfun.h�
 * Recursive string funcs in CS 1110 �
 */

#ifndef_STRINGFUN_H_�
#define_STRINGFUN_H_

#include <string>

/* True if word a palindrome */�
bool isPalindrome(string word);

/* True if palindrome ignore case */�
bool isLoosePalindrome(string word);

#endif

C++ Overview 12

Separation Requires Header Files

Prevents inclusion
more than once

 (which is an error)

gamedesigninitiative
at cornell university

the

�  Need #include for libs
�  But linker adds the libs
�  So what are we including?

�  Function Prototypes
�  Declaration without body
�  Like an interface in Java

�  Prototypes go in .h files
�  Also includes types, classes
�  May have own #includes

/* stringfun.h�
 * Recursive string funcs in CS 1110 �
 */

#ifndef_STRINGFUN_H_�
#define_STRINGFUN_H_

#include <string>

/* True if word a palindrome */�
bool isPalindrome(string word);

/* True if palindrome ignore case */�
bool isLoosePalindrome(string word);

#endif

C++ Overview 13

Separation Requires Header Files

Type not
built-in

gamedesigninitiative
at cornell university

the

Pointer

�  Variable with a * modifier

�  Stores a memory location

�  Can modify as a parameter

�  Must dereference to use

�  Can allocate in heap

C++ Overview 14

Pointers vs References

Reference

�  Variable with a & modifier

�  Refers to another variable

�  Can modify as a parameter

�  No need to dereference

�  Cannot allocate in heap

Java’s reference variables are a
combination of the two

gamedesigninitiative
at cornell university

the

Pointer

�  Variable with a * modifier

�  Stores a memory location

�  Can modify as a parameter

�  Must dereference to use

�  Can allocate in heap

C++ Overview 15

Pointers vs References

Reference

�  Variable with a & modifier

�  Refers to another variable

�  Can modify as a parameter

�  No need to dereference

�  Cannot allocate in heap

Java’s reference variables are a
combination of the two

Safer!
Preferred if do
not need heap

gamedesigninitiative
at cornell university

the

�  To return a non-primitive
�  Return value is on the stack
�  Copied to stack of caller
�  Cannot copy if size variable

�  Important for arrays, objects
�  But objects can cheat

int* makearray(int size) {�
 // Array on the stack�
 int result[size];

 // Initialize contents�
 for(int ii = 0; ii < size; ii++) {�
 result[ii] = ii;�
 }

 return result; // BAD!�
}

C++ Overview 16

When Do We Need the Heap?

0x7ed508 ???
0x7ed528 4
0x7ed548 0
0x7ed568 1
0x7ed588 2
0x7ed5a8 3

0x7ed508 0x7ed548 return

address
does not

exist

gamedesigninitiative
at cornell university

the

Not An Array

�  Basic format:
type* var = new type(params);

…

delete var;

�  Example:
�  int* x = new int(4);

�  Point* p = new Point(1,2,3);

�  One you use the most

C++ Overview 17

Allocation and Deallocation

Arrays

�  Basic format:
type* var = new type[size];

…

delete[] var; // Different

�  Example:
�  int* array = new int[5];

�  Point* p = new Point[7];

�  Forget [] == memory leak

gamedesigninitiative
at cornell university

the

Strings are a Big Problem

�  Java string operations allocate to the heap

�  s = "The point is ("+x+","+y+")"

�  How do we manage these in C++?
�  For char*, we don’t. Operation + is illegal.
�  For string, it is complicated. Later in lecture

�  Idea: Functions to remove string memory worries
�  Formatters like printf/CCLog for direct output
�  Stream buffers to cut down on extra allocations

C++ Overview 18

allocate

allocate

gamedesigninitiative
at cornell university

the

C-Style Formatters

�  printf(format,arg1,arg2,…)

�  Substitute into % slots
�  Value after % indicates type

�  Examples:
�  printf("x = %d",3)

�  printf("String is %s","abc")

�  Primarily used for output
�  Logging/debug (CCLog)
�  Very efficient for output

C++ Overview 19

Managing Strings in C++

C++ Stream Buffers

�  strm << value << value << …

�  Easy to chain arguments
�  But exact formatting tricky

�  Example:
�  cout << "x = " << 3 << endl

�  stringstream s << "x = " << 3

�  Great if you need to return
�  More efficient than + op
�  Can concatenate non-strings

gamedesigninitiative
at cornell university

the

Declaration

�  Like a Java interface
�  Fields, method prototypes
�  Put in the header file

 class AClass {�
 private: // All privates in group�
 int field;�
 void helper();

 public: // All publics in group�
 AClass(int field); // constructor�
 ~AClass(); // destructor

 }; // SEMICOLON!

C++ Overview 20

Classes in C++

Implementation

�  Body of all of the methods
�  Preface method w/ class
�  Put in the cpp file

 void AClass::helper() {�
 field = field+1;�
 }�
 AClass::AClass(int field) {�
 this->field = field;�
 }�
 AClass::~AClass() {�
 // Topic of later lecture �
 }

gamedesigninitiative
at cornell university

the

Stack-Based

�  Object assigned to local var
�  Variable is NOT a pointer
�  Deleted when variable deleted
�  Methods/fields with period (.)

�  Example:

 void foo() {�
 Point p(1,2,3); // constructor�
 …�
 // Deleted automatically�
 }

C++ Overview 21

Stack-Based vs. Heap Based

Heap-Based

�  Object assigned to pointer
�  Object variable is a pointer
�  Must be manually deleted
�  Methods/fields with arrow (->)

�  Example:

 void foo() {�
 Point* p = new Point(1,2,3); �
 …�
 delete p;�
 }

gamedesigninitiative
at cornell university

the

Stack-Based

�  Object assigned to local var
�  Variable is NOT a pointer
�  Deleted when variable deleted
�  Methods/fields with period (.)

�  Example:

 void foo() {�
 Point p(1,2,3); // constructor�
 …�
 // Deleted automatically�
 }

C++ Overview 22

Stack-Based vs. Heap Based

Heap-Based

�  Object assigned to pointer
�  Object variable is a pointer
�  Must be manually deleted
�  Methods/fields with arrow (->)

�  Example:

 void foo() {�
 Point* p = new Point(1,2,3); �
 …�
 delete p;�
 }

Also if
pointer to

stack-based

gamedesigninitiative
at cornell university

the

�  Do not need heap to return
�  Can move to calling stack
�  But this must copy object

�  Need a special constructor
�  Called copy constructor
�  Takes reference to object
�  C++ calls automatically

�  Is this a good thing?
�  Performance cost to copy
�  Cheaper than heap if small

 Point foo_point(float x) {�
 Point p(x, x);�
 return p; // Not an error�
 }

 Point::Point(const Point& p) {�
 x = p.x; �
 y = p.y; �
 z = p.z;�
 }

C++ Overview 23

Returning a Stack-Based Object

Calls

gamedesigninitiative
at cornell university

the

�  Do not need heap to return
�  Can move to calling stack
�  But this must copy object

�  Need a special constructor
�  Called copy constructor
�  Takes reference to object
�  C++ calls automatically

�  Is this a good thing?
�  Performance cost to copy
�  Cheaper than heap if small

 Point foo_point(float x) {�
 Point p(x, x);�
 return p; // Not an error�
 }

 Point::Point(const Point& p) {�
 x = p.x; �
 y = p.y; �
 z = p.z;�
 }

C++ Overview 24

Returning a Stack-Based Object

Calls

What happens when you return a string

gamedesigninitiative
at cornell university

the

The Many Meanings of const

� In C++, it is common to see something like:

const Point& foo(const Point& p) const;

Believe it or not, these are not the only consts!
But these are generally the only ones to use
See online tutorials for more

C++ Overview 25

gamedesigninitiative
at cornell university

the

The Many Meanings of const

� In C++, it is common to see something like:

const Point& foo(const Point& p) const;

Believe it or not, these are not the only consts!
But these are generally the only ones to use
See online tutorials for more

C++ Overview 26

Caller cannot
modify the

object returned

gamedesigninitiative
at cornell university

the

The Many Meanings of const

� In C++, it is common to see something like:

const Point& foo(const Point& p) const;

Believe it or not, these are not the only consts!
But these are generally the only ones to use
See online tutorials for more

C++ Overview 27

Caller cannot
modify the

object returned

Method cannot
modify the

object passed

gamedesigninitiative
at cornell university

the

The Many Meanings of const

� In C++, it is common to see something like:

const Point& foo(const Point& p) const;

Believe it or not, these are not the only consts!
But these are generally the only ones to use
See online tutorials for more

C++ Overview 28

Caller cannot
modify the

object returned

Method cannot
modify the

object passed

Method cannot
modify any
object fields

gamedesigninitiative
at cornell university

the

The Many Meanings of const

� In C++, it is common to see something like:

const Point& foo(const Point& p) const;

� Believe it or not, these are not the only consts!
� But these are generally the only ones to use
�  See online tutorials for more

C++ Overview 29

Caller cannot
modify the

object returned

Method cannot
modify the

object passed

Method cannot
modify any
object fields

gamedesigninitiative
at cornell university

the

�  Can implement in .h file
�  Define methods Java-style
�  Will inline the methods

�  Less important these days
�  Good compilers inline
�  Function overhead is low

�  Only two good applications
�  Getters and setters
�  Overloaded operators
�  Use this sparingly

 class Point {�
 private:�
 float x;�
 float y;

 public:

 Point(float x, float y, float z);

 float getX() const { return x; }

 void setX(float x) {�
 this->x = x;�
 }

 …�
 };

C++ Overview 30

Inlining Method Definitions

gamedesigninitiative
at cornell university

the

�  Change operator meaning
�  Great for math objects: +, *

�  But can do any symbol: ->

�  Method w/ “operator” prefix
�  Object is always on the left
�  Other primitive or const &

�  Right op w/ friend function
�  Function, not a method
�  Object explicit 2nd argument
�  Has full access to privates

Point& operator*=(float rhs) {�
 x *= rhs; y *= rhs; z *= rhs;�
 return *this;�
}

Point operator*(const float &rhs) const {�
 return (Point(*this)*=rhs);�
}

friend Point operator* (float lhs, �
 const Point& p) {�
 return p*lhs;�
}

C++ Overview 31

Operator Overloading

gamedesigninitiative
at cornell university

the

�  Subclassing similar to Java
�  Inherits methods, fields
�  Protected limits to subclass

�  Minor important issues
�  Header must import subclass
�  super() syntax very different
�  See tutorials for more details

�  Weird C++ things to avoid
�  No multiple inheritance!
�  No private subclasses

 class A {�
 public:�
 float x;

 A(float x) { this->x = x; }�
 …�
 };

 class B : public A {�
 public:�
 float y;

 B(float x, float y) : A(x) {�
 this->y = y;�
 }�
 …�
 };

C++ Overview 32

Subclasses

gamedesigninitiative
at cornell university

the

�  Subclassing similar to Java
�  Inherits methods, fields
�  Protected limits to subclass

�  Minor important issues
�  Header must import subclass
�  super() syntax very different
�  See tutorials for more details

�  Weird C++ things to avoid
�  No multiple inheritance!
�  No private subclasses

 class A {�
 public:�
 float x;

 A(float x) { this->x = x; }�
 …�
 };

 class B : public A {�
 public:�
 float y;

 B(float x, float y) : A(x) {�
 this->y = y;�
 }�
 …�
 };

C++ Overview 33

Subclasses

Weird things
if you make

it private

Like Java
call to super

gamedesigninitiative
at cornell university

the

C++ and Polymorphism

�  Polymorphism was a major topic in CS 2110
�  Variable is reference to interface or base class
�  Object itself is instance of a specific subclass
�  Calls to methods are those implementated in subclass

�  Example:
�  List<int> list = new LinkedList<int>();

�  list.add(10); // Uses LinkedList implementation

�  This is a major reason for using Java in CS 2110
�  C++ does not quite work this way

C++ Overview 34

gamedesigninitiative
at cornell university

the

�  Cannot change stack object
�  Variable assignment copies
�  Will lose all info in subclass

�  Only relevant for pointers
�  C++ uses static pointer type
�  Goes to method for type

�  What the hell?
�  No methods in object data
�  Reduces memory lookup
�  But was it worth it?

 class A {�
 public:�
 int foo() {return 42;}�
 };

 class B : public A {�
 public:�
 int foo() {return 9000; }�
 };

 B* bee = new B();

 x = b->foo(); // x is 9000

 A* aay = (A*)bee;

 y = a->foo(); // y is 42!!!

C++ Overview 35

C++ and Polymorphism

gamedesigninitiative
at cornell university

the

�  Purpose of virtual keyword
�  Add to method in base class
�  Says “will be overridden”

�  Use optional in subclass
�  Needed if have subsubclass
�  Or if not further overridden

�  Hard core C++ users hate
�  Causes a performance hit
�  Both look-up and storage
�  But not a big deal for you

 class A {�
 public:�
 virtual int foo() {return 42;}�
 };

 class B : public A {�
 public:�
 int foo() {return 9000; }�
 };

 B* bee = new B();

 x = b->foo(); // x is 9000

 A* aay = (A*)bee;

 y = a->foo(); // y is 9000

C++ Overview 36

Fixing C++ Polymorphism

gamedesigninitiative
at cornell university

the

Is There Anything Else?

� C++ has a lot of features not covered lecture
� Templates are the biggest topic skipped
�  Preprocessor directives and macros (like #ifndef)
� Namespaces (e.g. packages)

� But you can survive this class without them
� Need to use templates, but not write them
� Using templates is close to a Java generic

� Or just look at some tutorials online
C++ Overview 37

gamedesigninitiative
at cornell university

the

Summary

�  C++ has a lot of similarities to Java
�  Java borrowed much of its syntax, but “cleaned it up”

� Memory in C++ is a lot trickier
�  Anything allocated with new must be deleted
�  C++ provides many alternatives to avoid use of new

�  Classes in C++ have some important differences
�  Can be copied between stacks if written correctly
�  C++ supports operator overloading for math types
�  C++ needs special keywords to support polymorphism

C++ Overview 38

