
CS414 SP 2007 Assignment 4

Due Mar. 28 at 11:59pm   Submit your assignment using CMS

1. Suppose that a disk drive has 5000 cylinders, numbered 0 to 4999. The drive is currently serving a 
request at cylinder 143, and the previous was at cylinder 125. The queue of pending requests, in FIFO 
order, is:

86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130
Starting from the current head position, what is the total distance (in cylinders) that the disk arm moves 
to satisfy all the pending requests for FCFS, SSTF, SCAN, LOOK, C-SCAN and C-LOOK.    

  
The FCFS schedule is 143, 86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130. The total seek distance is 
7081.
The SSTF schedule is 143, 130, 86, 913, 948, 1022, 1470, 1509, 1750, 1774. The total seek distance is 
1745.
The SCAN schedule is 143, 913, 948, 1022, 1470, 1509, 1750, 1774,4999, 130, 86. The total seek 
distance is 9769. 
The LOOK schedule is 143, 913, 948, 1022, 1470, 1509, 1750, 1774, 130, 86. The total seek distance is 
3319.
The C-SCAN schedule is 143, 913, 948, 1022, 1470, 1509, 1750, 1774, 4999,  0, 86, 130. The total 
seek distance is 9985.
The C-LOOK schedule is 143, 913, 948, 1022, 1470, 1509, 1750, 1774, 86, 130. The total seek 
distance is 3363.

2. Assume that you are writing a data storage application which must maintain k disks of data, but 
cannot communicate with the global Internet or, specifically, off-site data backups. Moreover, you find 
yourself in the unenviable position of being exposed to intermittent sunspots - specifically, the chance 
of a neutron striking sectors on your disks and altering the data on them is much, much higher than 
usual! To improve the reliability of your application, you elect to have it use stable storage to detect 
and, hopefully, correct disk errors. Cost is not necessarily an object, you can easily afford up to 2^k 
disks, if necessary.

a) If it must support multiple concurrent readers and multiple concurrent writers, which level(s) of 
RAID could you use? What are the downsides of each?

There have to exist at least 2 blocks that can be read/written completely independently. Therefore, only 
levels 0, 5 and 6 might work. Level 0 provides no error recovery, so it can not be used in this context.  
However, level 1+0 mirrors the data to provide redundancy but otherwise works as level 0 does, so it 
would be a good option. 

Level 5 relies on distributed parity blocks, so writes are somewhat expensive as a block from each 
other disk must be read in order to calculate the new parity value.  Only the actual location of the write 
and the location of the particular distributed parity block are actually written to, so a few writes, the 



exact number depending on the size of the array, can occur in parallel.  Since level 5 relies on parity for 
error recovery, it can only correct errors in a single block among each group of blocks (each group 
contains exactly one block from every disk - the error can be the result of disk failure or just data 
corruption, which is more likely in this case).  Recovery from an error is expensive in the same way 
writes are expensive, as all other blocks from the group (including the parity block this time) must be 
read in to calculate the correct value for the block with an error.  The number of concurrent writes is 
limited to slightly more than half of the data containing disks, since each data write must also write a 
parity block to another disk, but in practice the level of concurrency will be lower since there is some 
chance that the disk a that a write needs to go to is already being written to by either a data a parity 
write. 

Level 6 is very similar to level 5 with the exception that instead of storing parity, it stores error 
correcting codes such Reed-Solomon codes.  These coding schemes use 2 or more bits per bit of data, 
but allow recovery from 2 or more blocks in a group (depending on the particular scheme in use).  All 
of the other downsides of 5 are roughly the same - although calculating error correcting codes is more 
expensive than calculating parity, it is easy to implement in hardware and becomes negligible in the 
face of having to read in a block from each disk. 

Level 1+0 is resistant to a large number of errors, as long as one block in each of the mirrored groups is 
intact, all data may be recovered.  Recovering from errors is very efficient, because it is just copying 
over the data from a good mirror.  By increasing the number of disks in each mirror group (it does not 
have to be pairs), this scheme can scale to handle very high error rates.  Writes must be mirrored to the 
other disks in the mirror group, but this can occur simultaneously, so there is no overhead for writes, 
giving much better performance than 5 or 6.  Assuming there are N data disks and K mirrors of each, 
1+0 can support up to N concurrent writes and N*K concurrent reads.  The only real downside is the 
use of N*K disks, with K >= 2, but for many values of K, we have that many disks, so in this situation 
it is not really a problem. 

b) If it must support multiple concurrent readers but need no longer support multiple concurrent 
writers, which level(s) of RAID could you now use that you could not use before? What are the 
downsides of each?

Level 1 and level 4 allows for multiple concurrent readers but not for multiple writers, so they are both 
now possible solutions. 

Level 1 has efficient reads and writes but high disk overhead, much like level 1+0.  It does not scale to 
large storage needs, since the maximum data size is limited by the maximum size of a single disk.  It 
can only allow K concurrent readers, where K is the number of disks in a mirror group.  Since K is 
usually 2, this is not that good. 

Level 4 is very similar to level 5, with the exception that it always stores parity data on a designated 
parity disk, rather than distributing the parity data over all disks.  This means that all writes must touch 
the parity disk, which eliminates concurrent writes and tends to overuse the single parity disk.  Level 4 
has the same error recovery abilities as level 5, as well as the same inefficient write characteristics.  If 
there are N data disks, level 4 can support N concurrent reads. 

c) Assume (b) again, but now cost has become an issue - you can only afford 2*k-1 disks, and a very 
crude disk controller. Which levels of RAID become unavailable? Which levels of RAID become 



undesirable?

All variations of level 1 are now unavailable because these levels use at least 2*K disks.  Levels 4, 5, 
and 6 are all somewhat undesirable, as the efficient implementation relies on controllers that are more 
complex, at least relative to the controller for level 1.  The level 6 controller would be the most 
complex because it has to distribute parity over all of the disks and must calculate error correcting 
codes.  The level 5 controller would be slightly more simple since it only has to calculate parity instead 
of ECC.  The level 4 controller would be the most simple (the closest to crude) of the available levels 
since it also does not have to distribute parity among all disks, so it would be the best choice. 

3.
(a) In some systems, the i-nodes are kept at the start of the disk. An alternative design is to allocate an 
i-node when a file is created and put the i-node at the start of the first block of the file. Discuss the pros 
and cons of this alternative.

Pros: No disk space is wasted on unused i-nodes and it's not possible to run out of i-node. Less disk 
movement for small files is needed since the i-node and the initial data can be read in one operation.  

Cons: file system integrity checks will be slower because of the need to read an entire block for each i-
node and because i-nodes will be scattered all over the disk. Files whose size has been carefully 
designed to fit the block size will no longer fit due to the i-node, messing up performance. 

(b) Assuming the style of i-node storage where the i-node is stored at the first block of a file, how many 
disk operations are needed to fetch the i-node for the file /a/b/c/d/e (where a/b/c/d is the absolute 
directory path, and 'e' is the file name)? Assume that the i-node for the root directory is in the memory, 
but nothing else along the path is in the memory. Also assume that each directory fits in one disk block.

Let's assume that for any directory, it takes one disk operation to retrieve the i-node, and one more 
operation for the directory content. Then the following disk reads are needed:

1. dir content for /
2. i-node for a
3. dir content for a
4. i-node for b
5. dir content for b
6. i-node for c
7. dir content for c
8. i-node for d
9. dir content for d
10. i-node for e

(c) On a Unix-like filesystem with no bad blocks on disk. A researcher measures the average access 
time for each block of various N-block files, where he varies N from 1 to 20. The result graph is shown 
below. What could be the reason for the increase in per block access time at 12 blocks?



The i-node only holds 11 direct blocks, so on the 12th block, an indirect block must be loaded into 
memory to find the actual location of the 12th block, so the access time jumps up.  Since the same 
indirect block contains a long run of blocks after 12, those blocks can found from the same indirect 
block, so as the file size increases past 12, the average access time decreases, since the time spent 
loading the indirect block is amortized over several file blocks instead of just the one. 

4. Consider a standard computer architecture in which the operating system is about to initiate a disk 
I/O operation initiated by a user program that calls the write system call. Assume that the write 
will be one whole disk block and that the argument to the write is a page-aligned region within the 
user’s address space.

(a) Walk us through the steps that the operating system will perform in order to do this write and 
report completion to the user. Assume that we are not writing to the disk buffer pool – the I/O will be 
done directly to the disk, using DMA transfer from the page in the user’s address space. You can 
assume that the disk is idle and that no other requests are pending.

Note: we’re only interested in things the operating system does. And we are looking for an answer 
expressed in terms of relatively high level functional steps – an answer shouldn’t invol ve more than 
about 10-15 separate steps. For example, a step might be “mark the process state as waiting and 
schedule some other process.”. Please don't copy-paste chunks of Linux operating system code 

Note: The order the events need not to be exactly as the solution below, but some steps have to happen 
before others (such as step 1).  Here we refer to the process that calls write as Process W

1. Switch from user mode to kernel mode, save registers.
2. Verify the parameter (validity of the file descriptor, opened and writable; memory validity of 

write buffer address, length, etc.) 



3. Identify the physical disk blocks to be written (allocate new one if needed). (This step actually 
contain omits many filesystem details, such as,  checks to ensure resulting file does not exceed 
some limits; 

4. Setup the necessary information for lower-level component (such as device driver). Device 
driver schedules the I/O, eventually sends command to  DMA controller.

5. Mark process W's state as waiting and schedule some other process
6. DMA operates the device hardware to transfer data from process W's address space to disk. 

When the transfer is done, it raises an interrupt. 
7. Switch to kernel mode if not already in it. Save registers. Service the interrupt, store any 

necessary data, signals the device driver, and return from the interrupt 
8. The device drive determines the result of the I/O operation (success or not). Marking process 

W's state as runnable. 
9. (Sometime later, or maybe immediately) Process W gets to run, update the corresponding 

inodes, setups the return value (completion or error code),  return from the system call. Switch 
back to user mode, restore the registers.

(b) Most operating systems provide a user-level implementation of a write routine that converts byte-at-
a-time I/O operations (such as characters printed by the C printf() procedure) into block I/O operations. 
Yet system calls like write usually allow the program to indicate how many bytes are to be written, 
and in principle, nothing stops the application from calling write on each byte, or set of bytes, that it 
produces. Why do so many operating systems use these intermediary routines? Are there conditions 
under which such a routine might hurt performance or otherwise give undesired behavior?

The user level routine is convenient in that the application can write whenever it has data that needs to 
be written.  The OS worries about when to optimize the writes by caching them until there is enough 
aggregate data to make an actual write to disk efficient.  The downside is that if there is a system crash 
or the disk is removed, the cached but not yet written to the disk data will be lost. 

5. Modern Unix support the rename(char *old, char *new) system call. Unix v6 does not have 
a system call for rename; instead, rename is an application that make use of the link and unlink 
system calls as following:

int rename (char *old, char *new) {
unlink(new);
link(old, new);
unlink(old);

}

What are the possible outcomes of running rename(“hw4.pdf”, “hw5.pdf”) if the computer 
crashes during the rename call with above implementation? Assume that both “hw4.pdf” and 
“hw5.pdf” exist in the same directory but in different directory blocks before the call to rename.  

(Check the Unix man page for details about rename, link, unlink system calls)



Because the effects of the calls in the rename implementation are not persistent unless the 
corresponding block writes go out to disk, it is not correct simply to consider the failure happening 
before or after each call. Instead, we need to think about the possible block writes that can happen 
before the failure.
The rename implementation above causes three block writes First, the directory entry for new  is 
removed from its block. Second, the directory entry for new is added back to its block, but with the i-
node for old. Third, the directory entry for old is removed from its block.

The possible outcomes are:
● Nothing done: no changes written to disk yet.
● The first write went to disk: old remains as before, but new doesn't exist at more (if it has exist 

before)
● The first and second writes went to disk: old remains as before, but now new points at the same 

file as old. 
● The first, second, and third writes went to disk: old is gone, and new points to where old was 

rename succeeded.


