
Assignment 5
Reliable networking with

minisockets
Ari Rabkin

A filesystem postmortem

It’s hard, we know. We aren’t out to get
you; grading won’t be too brutal.
Late submission until 3am tonight without
penalty.
Also, we’ll drop lowest project score
Remember; if you need extra time, or
clarification, ask early.

Project overview

Datagram networking is ugly:
Packets get lost
Forces programmer to think about
packets (too low level)

We’re going to build reliable data streams,
which have neither drawback.
Closely mimics TCP

Sockets

A socket is an endpoint of a reliable
communication stream
Program can read or write any quantity of
data; stream interface divides into packets.
Yours are called minisockets -- see
minisocket.h and .c

Server and Client Sockets

Sockets come in two kinds: server
(listening) and client
Server socket created by
minisocket_server_create(); call blocks
until client connects.
Clients create sockets with
minisocket_client_create(), which connects.

Creating a socket

SYN

SYNACK

ACK

Client Server

The three-way handshake

Two-way-ness

Note that after connection setup, the stream
is two-way.
The server and client sockets become
interchangeable after the create succeeds.

Closing sockets gracefully

Either side can send a close message.
Other side responds with ACK

After receiving ACK or timeout, close-
initiator can treat socket as closed.
Other side waits 15 seconds, then treats
it as closed. (why?)

Networks lose packets for lots of
reasons.

Easy fix: retransmit if needed.

Catch: what if destination is down?

Packet loss

Using ACKs

Detecting failure perfectly is impossible.
In practice, we do well enough.
Send a packet with sequence #, wait for
ACK to that packet.
Resend if no ACK received by timeout.

Retransmitting

Wait 100 ms for ACK, then retransmit
Retransmit seven times, doubling wait each
time after each failure.
Use alarms and semaphores: note that if a
packet arrives, should wake up right away.
So sleep-with-timeout is no good here.

Special cases

In the three-way handshake, the SYN and
the SYNACK are retransmitted reliably.
So is the CLOSE on socket teardown.

Packet Formats

Remember that ‘type’ field in packets from
Project 3? Here’s where it comes in handy.
Need to separate minisocket and minimsg
packets.
Probably also wise to divide socket control
and data packets.

Minisocket Packets

You need SYN, SYNACK, DATA, ACK,
CLOSE.

Streams

Key idea of streams is that the application
doesn’t see packet boundaries.
All app sees is a stream of data, some of
which is available.
Stream must be reliable, since app can’t
easily implement reliability again on top.

Read and write

We’re building streams on packets:
minisocket_send() with a big buffer should
split it into packets and send them reliably.
Likewise, minisocket_receive() should
return whatever is available, or a full buffer.
If more data than a buffer is available, can’t
lose it. (Save it in queue somehow)

The State Machine

Use the state machine abstraction in
designing, and also in implementing.
Track a state for each socket, and when a
packet comes in, switch on socket state and
packet type.
See the TCP state machine (online) for
further insight.

Notes

Thread safety is important here.
Don’t sleep when you have work to do:
need to wake listening thread as soon as
packet arrives

