Assignment 5
Reliable networking with
minisockets

Lb L T A - =y
e Lt T B T ”“%L;Tﬂ—‘q e ks Tl

Ari Rabkin




A filesystem postmortem

e Tt 1] e 45 PR S g €A Pt #"hhﬂz:ﬂ.ﬂﬂhp.-..._-uh:_, b Pt o el T : WW Y . " Rl

o It’s hard, we know. We aren’t out to get
you; grading won’t be too brutal.

o Late submission until 3am tonight without
penalty.

o Also, we’ll drop lowest project score

o Remember; it you need extra time, or
clarification, ask early.




Project overview

= A ] _‘ Y 5 - ' Polfaling = '.:r'\.ﬁ-'-!-l.'-r_-r L el g o e ? ¢
A A Tt gl o i ot it Lk, FRPRG A

o Datagram networking 1s ugly:
o Packets get lost

o Forces programmer to think about
packets (too low level)

o We’re going to build reliable data streams,
which have neither drawback.

o Closely mimics TCP




Sockets

o A i = v VA Pty o e B Rt g Tt s e SN LE e o o el S B e LTy E . 5 Rl

o A socket 1s an endpoint of a reliable
communication stream

o Program can read or write any quantity of
data; stream interface divides into packets.

o Yours are called minisockets -- see
minisocket.h and .c




Server and Client Sockets

NS b St o Tt ot E oo Lt A A ety S AR S S v e e i,

o Sockets come 1n two kinds: server
(listening) and client

o Server socket created by
minisocket_server_create(); call blocks
until client connects.

o Clients create sockets with
minisocket_client_create(), which connects.




Creating a socket

x o : ! :i -*; 3 :! e # i Py s "'.'."-T:ﬂq:ﬂ’.“l-'-r-l-.“u'l-';l'h._.—l"l"H-J-l'.l'll'---u"-i:: T & WW Y . i, 1 -I-Ll"J."d_.I'E!I

Client Server

.

The three-way handshake




Two-way-ness

Ao T e 14..5 L = oy ¥ A Pty e B e s o vt ol el AT - ww . ' " T it

o Note that after connection setup, the stream

1S two-way.

o The server and client sockets become
interchangeable after the create succeeds.




Closing sockets gracefully

e T s T

o Either side can send a close message.

o Other side responds with ACK

o After receiving ACK or timeout, close-
Initiator can treat socket as closed.

o Other side waits 15 seconds, then treats
it as closed. (why?)




Packet loss

Ao T e 14..5 L = oy ¥ A Pty e B e s o vt ol el AT - WW . ' " T it

o Networks lose packets for lots of
reasons.

o Easy fix: retransmit if needed.

o Catch: what if destination 1s down?




Usmg ACKs

e L T L L S L T A IR 10 i abiarasi S T i

o Detecting tailure pertectly 1s impossible.
In practice, we do well enough.

o Send a packet with sequence #, wait for
ACK to that packet.

o Resend 1f no ACK received by timeout.




Retransmitting

S A i = v VA Pty o e B Rt g Tt s e SN LE e o o el S B e LTy E . 5 Rl

o Wait 100 ms for ACK, then retransmit

o Retransmit seven times, doubling wait each
time after each failure.

o Use alarms and semaphores: note that if a
packet arrives, should wake up right away.

o So sleep-with-timeout is no good here.




Special cases

Ao T e 14..5 L = oy ¥ A Pty e B e s o vt ol el AT - ww . ' " T it

o In the three-way handshake, the SYN and
the SYNACK are retransmitted reliably.

o So 1s the CLOSE on socket teardown.




Packet Formats

S A i = v VA Pty o e B Rt g Tt s e SN LE e o o el S B e LTy E . 5 Rl

o Remember that ‘type’ field in packets from
Project 37 Here’s where 1t comes in handy.

o Need to separate minisocket and minimsg
packets.

o Probably also wise to divide socket control
and data packets.




Minisocket Packets

x o : ! :i -*; 3 :! e # i Py s "'.'."-T:ﬂq:ﬂ’.“l-'-r-l-.“u'l-';l'h._.—l"l"H-J-l'.l'll'---u"-i:: T & WW Y . i, 1 -I-Ll"J."d_.I'E!I

o You need SYN, SYNACK, DATA, ACK,
CLOSE.




Streams

S A i = v VA Pty o e B Rt g Tt s e SN LE e o o el S B e LTy E . 5 Rl

o Key 1dea of streams 1s that the application
doesn’t see packet boundaries.

o All app sees 1s a stream of data, some of
which 1s available.

o Stream must be reliable, since app can’t
easily implement reliability again on top.




Read and write

e Tt 1] e 45 PR S g €A Pt #"hhﬂz:ﬂ.ﬂﬂhp.-..._-uh:_, b Pt o el T : WW Y . " Rl

o We’re building streams on packets:
minisocket_send() with a big buffer should
split 1t into packets and send them reliably.

o Likewise, minisocket receive() should
return whatever 1s available, or a full bufter.

o If more data than a buffer 1s available, can’t
lose 1t. (Save 1t 1n queue somehow)




The State Machine

NS b St o Tt ot E oo Lt A A ety S AR S S v e e i,

o Use the state machine abstraction 1n
designing, and also 1n implementing.

o Track a state for each socket, and when a
packet comes 1n, switch on socket state and
packet type.

o See the TCP state machine (online) for
further 1nsight.




o Thread safety 1s important here.

o Don’t sleep when you have work to do:
need to wake listening thread as soon as
packet arrives




