
Assignment 2
More on Synchronization

Ari Rabkin

First, an apology

I had intended to give you all some
examples and templates of design docs.
I didn’t get to it until Sunday. I’m sorry
about that.
We’ll try to do it earlier next time.
Remember, TAs are students too!

Congratulations!

Most of the designs I saw were quite good.
One clarification: don’t regurgitate
skeleton code or lectures.

Project One turned out really well.
Median and Mean were in the 80s

Synchronization

Synchronization is a key theme of 414/415.
Crucial for thread safety (and OS design).
Unavoidable in distributed systems.
Project Two is preemptive...watch out!
Severe grade penalties for thread unsafety.

Two uses:

Two uses of synchronization primitives:
Inter-thread control flow (signaling)
Concurrency control without explicit
dependence (locking)

Use semaphores for both.

Locking: why

Suppose some data structure is shared
between threads.
If both threads update concurrently, can
corrupt values.
Scheduler dependent, hard to debug --
heisenbugs are hard to track down.

Locking: how

Two ways of locking in minithreads:
Can use a semaphore or disable interrupts.
Use semaphores when you can, turn off
interrupts when you must.

Locking: where

Need to do this for every data structure
shared between threads.
If two threads can access concurrently,
generally need locks or atomic operations.
For you, locks are usually the way to go.
Check with us if you want something fancy.

Synchro != Locking

Locking isn’t only synchro issue.
Often are more subtle race conditions.
Watch out!
Also, beware deadlock

Don’t “Roll Your Own”

Temptation to hack scheduler to do magic.
Resist this!! Your code will be severely
penalized, and also irreparably broken.
Use semaphores for all inter-thread synch.
Check with us if you think you have a
special case.

Windows API

Don’t make windows API calls without
checking with us first.

The idle thread

Idle thread stays running
Just does while(1) ; for this project.
yield() disables interrupts -- bad

“Security”

Minithreads is a thread package, not an OS.
Threads aren’t protected from each other.
Not meaningful to worry about malicious
threads: can’t protect against them anyway.
But good to catch programmer error.

Wall vs CPU time

Thread running and getting interrupts: all
counters tick.
Thread running (interrupts off): cpu and
wall clocks tick
Thread “running”, but minithreads isn’t:
wall clock ticks, no others
Thread not running: all counters frozen

Use

