Assignment 2
More on Synchromzatlon

A, -] T, gl
e, SPt e T Y S P G LT YA A TS L S ekl [PR, s B DA R

Ari Rabkin

First, an apolo gy

L T e ok Lk [PR

o I had intended to give you all some
examples and templates of design docs.

o I didn’t get to 1t until Sunday. I’m sorry
about that.

o We’ll try to do it earlier next time.

o Remember, TAs are students too!

Congratulations!

S A i = v VA Pty o e B Rt g Tt s e SN LE e o o el S B e LTy E . 5 Rl

o Most of the designs I saw were quite good.

o One clarification: don’t regurgitate
skeleton code or lectures.

o Project One turned out really well.

o Median and Mean were 1n the 80s

Synchronization

x o .,1._ E - ilﬂ- : LA "'""""'—'-':ﬂ-:ﬂ"“ L ek W T .u‘-i:: PR T P

o Synchronization 1s a key theme of 414/415.
o Crucial for thread satety (and OS design).

o Unavoidable 1n distributed systems.

o Project Two 1s preemptive...watch out!

o Severe grade penalties for thread unsafety.

Two uses:

Ao T e 14..5 L = oy ¥ A Pty e B e s o vt ol el AT - ww . ' " T it

o Two uses of synchronization primitives:

o Inter-thread control flow (signaling)

o Concurrency control without explicit
dependence (locking)

o Use semaphores for both.

Locklng Why

R b SR Tt S P e ¥ A Pty S 30 BT S v B PN a5 i i B Ty i TR

o Suppose some data structure 1s shared
between threads.

o If both threads update concurrently, can
corrupt values.

o Scheduler dependent, hard to debug --
heisenbugs are hard to track down.

Lockmg how

TR b S L Tt o U P L A ey ST TSI I v e B PN a5 i i B Ty i TR

o Two ways of locking in minithreads:

o Can use a semaphore or disable interrupts.

o Use semaphores when you can, turn oft
interrupts when you must.

Locking: where

S A i = v VA Pty o e B Rt g Tt s e SN LE e o o el S B e LTy E . 5 Rl

o Need to do this for every data structure
shared between threads.

o If two threads can access concurrently,
generally need locks or atomic operations.

o For you, locks are usually the way to go.

o Check with us 1f you want something fancy.

Synchro = Locklng

e TR

o Locking 1sn’t only synchro issue.

o Often are more subtle race conditions.
Watch out!

o Also, beware deadlock

Don’t “Roll Your Own”

" e] _.‘ m": i :! et Mq‘-.' :"'\-‘F"u":ﬂ_u. 'I"--_'h'_-._.'l"i-l-.l [u"‘i::. Y.

o Temptation to hack scheduler to do magic.

o Resist this!! Your code will be severely
penalized, and also irreparably broken.

o Use semaphores for all inter-thread synch.

o Check with us 1t you think you have a
special case.

Windows API

BT B b A, it B S PG LA A ety T2 B St R

o Don’t make windows API calls without
checking with us first.

The 1dle thread

B Tt A S o A A et e T L RN st S T BN e i it B Ty il i T BN

o Idle thread stays running

o Just does while(1) ; for this proj

o yield() disables interrupts -- bad

“Security”

x o .,1._ E - ilﬂ- : LA "'""""'—'-':ﬂ-:ﬂ"“ L ek W T .u‘-i:: PR T P

o Minithreads 1s a thread package, not an OS.

o Threads aren’t protected from each other.

o Not meaningful to worry about malicious
threads: can’t protect against them anyway.

o But good to catch programmer error.

Wall vs CPU time

B kel PRSI . = s e S R

o Thread running and getting interrupts: all
counters tick.

o Thread running (interrupts off): cpu and
wall clocks tick

o Thread “running”, but minithreads 1sn’t:
wall clock ticks, no others

o Thread not running: all counters frozen

P _.“..:“.__

|
|

¥l

