Assignment 2
“Thls tlme 1t S preemptlve

z s . m.{' S B Pty =" e Lo st B PN e Chasde .. IR 2 Tl

Ari Rabkin

Preemption

S A i = v VA Pty o e B Rt g Tt s e SN LE e o o el S B e LTy E . 5 Rl

o Need to preempt threads for scheduling
fairness.

o Use interrupts to regain control

o Call minithread_clock_init to get a stream
of interrupts; specifty interrupt handler.

o Return from handler ends interrupt

Interrupts

Ao T e 14..5 L = oy ¥ A Pty e B e s o vt ol el AT - ww . ' " T it

o Recall that interrupts are delivered on stack
of current thread.

o Can call yield to switch threads

o Interrupts arrive every PERIOD.

o Should update counter (zicks) on each
interrupt

Scheduhng

B kel PRSI . = s e S R

o We’re going to do strict priority scheduling.
o Keep k queues, one for each priority.

o Next thread should come from highest non-
empty queue

o Hide complexity inside multilevel_queue.c

Strict priorities

S A i = v VA Pty o e B Rt g Tt s e SN LE e o o el S B e LTy E . 5 Rl

o We’re going to have two kinds of threads:

o User threads (low priority)

o System threads (high priority)

o “Run system threads if you can, user
threads i1f no system threads to run”

o Pick new thread every tick.

Hide details

Ao T e 14..5 L = oy ¥ A Pty e B e s o vt ol el AT - ww . ' " T it

o Hide the details of this in multilevel queue
module. You might add more levels later.

o Note that this 1s not a feedback queue.

Alarms

S hh e - e ettt L L I e T W i ¥ i e AR

o Want stuff to happen at fixed time 1n future.

o Alarms let a thread say “run this code 1n
200 milliseconds.”

o To create alarm, specity function to be
called, argument, and time offset.

o Identify alarms with alarm IDs.

o See alarm.c and alarm.h

Alarm operations

Ao T e 14..5 L = oy ¥ A Pty e B e s o vt ol el AT - WW . ' " T it

o Two operations on alarms: register and
deregister.

o Third operation (invocation) 1s implicit.

Design choices

e Tt 1] e 45 PR S g €A Pt #"hhﬂz:ﬂ.ﬂﬂhp.-..._-uh:_, b Pt o el T : WW Y . " Rl

o Can run alarm procedure 1n special thread,
or at interrupt time, ofr..."

o Common case 1s short and small alarms.

o Note that if you call at interrupt time,
alarms must be small.

o Specity which implementation you chose 1n
your design doc!

More design choices

Ao T e 14..5 L = oy ¥ A Pty e B e s o vt ol el AT - ww . ' " T it

o Lots of clever things you can do.

o But think them through 1n advance, and
check with us.

o This 1s your chance to be creative and
practice your engineering.

Sleep_with_timeout

u g M4me‘lih L mﬂ:mgh..-. e L L T .Ll'\-i:: T

o Sometimes want to have a thread sleep for
a fixed number of milliseconds.

o For instance, network timeouts.

o You should add a function to do this.

o Can implement timeouts cleanly with
alarms and semaphores.

Measurement

——— ik e - e ettt L L I e e o i i e AR

o Often want to know how fast code runs.
o Add support for per-thread timers

o Read them with read_counters() or whatever
you name 1it.

o For each thread, track several quantities.

o For each quantity, read clock at start and end
of timeslice, and add difference to counter.

What to measure

S A i = v VA Pty o e B Rt g Tt s e SN LE e o o el S B e LTy E . 5 Rl

o Want to measure three things per thread:
wall time, process CPU time, and
minithread time.

o Get wall time from GetTickCount in
windows.h

o Get CPU time from clock() 1in time.h

o Get minithread time from your tick counter.

What this measures

S A i = v VA Pty o e B Rt g Tt s e SN LE e o o el S B e LTy E . 5 Rl

o clock() gives you ticks of CPU time given
to the process (CLOCKS_PER_SEC ticks
per second)

o GetTickCount() returns milliseconds since
system boot.

o Your counter PERIOD miliseconds. (See
interrupts.h)

Why are these difterent?

7 A] m": '5 ‘:5 S gt Hﬂ,i—" -:"‘-‘F"u":ﬂ_u. 'I"--_'h'_-._.'!"ﬂ-.l [u"‘i:: 4 Y.

o Q: Why can CPU time not match
minithread time?

A: libraries, interrupts off...

o Q: Why doesn’t CPU time match wall
time?

A: Other processes!

Reading atomically

x A PR _‘ M*me‘lﬂ-ﬁ#.h "—'“-T:ﬂq:ﬂh“ e 'I-'-r_-l et Wt i i . -u"i%‘.:r.”“

o Want to read all three counters “atomically”™

o Easiest way 1s to define a minithread_stats
struct, and have your read_counters
function return it.

o Be sure to make read counters threadsafe.

Part 5: Prime numbers

x o .,1._ E - ilﬂ- : LA "'""""'—'-':ﬂ-:ﬂ"“ L ek W T .u‘-i:: PR T P

o A prime number 1s an integer divisible only
by itself and one.

o You're going to write a random-prime-
generator.

o Operates on “small” numbers (order of
103), can use trial division

Prime numbers

e Tt 1] e 45 PR S g €A Pt #"hhﬂz:ﬂ.ﬂﬂhp.-..._-uh:_, b Pt o el T : WW Y . " Rl

o Going to also use threads.

o One thread to get random, one thread to do
trial division, and a third to print the results

o Threads communicate using semaphore-
protected queues.

o Need two semaphores; one as mutex on
queue, one to put bound on queue length.

The generator

e Tt 1] e 45 PR S g €A Pt #"hhﬂz:ﬂ.ﬂﬂhp.-..._-uh:_, b Pt o el T : WW Y . " Rl

o Generator thread needs to pick ints in range
from 2 to MAXPRIME, where there’s some
#define MAXPRIME xx statement.

o xx should be 108 or so.

o Use genintrand(int x) to get random
numbers between 0 and x

o Declared in random.h

Getting random numbers

NS b St o Tt ot E oo Lt A A ety S AR S S v e e i,

o Problem: computers are deterministic;
where can random numbers come from?

o Solution: seed generator with some
“random” data from world.

o Call sgenrand(long seed) with some
random seed. Using time() 1s common.

Prime testing

——— ik e - e ettt L L I e e o i i e AR

o Testing 1s easy. Just divide candidate prime
p by all integers between 2 and sqrt(p).

o Remainder zero implies not prime.

o Can use % operator to check if a number
divides another:

o a%b = remainder when a 1s divided by b.

o Pass primes on to printing thread

The prlntlng thread

IR S A Tt g Fh Ay S AT I B e b Ei ookt FRRRGT SO

o Display some of the primes. (Use printf.)

o Don’t have to print them all. Tune the
fraction printed so you print a few per
second.

o Should periodically (every 10 seconds?)
update with total found per second.

o Use time(0) to find seconds since epoch.

o Subtract to find elapsed time.

Statistics

Ao T e 14..5 L = oy ¥ A Pty e B e s o vt ol el AT - WW . ' " T it

o Use your stats feature!

o Have program display fraction of time
spent 1n each thread.

o Time spent 1n libraries (per thread)

o etC...

Design process

Ao T e 14..5 L = oy ¥ A Pty e B e s o vt ol el AT - WW . ' " T it

o This time, we’d like you to sign up in
advance for a design doc review.

o No more than two groups per TA per hour.

What to put in

o Same story as last time.

o Specity functions — particularly t
define. Interface, behavior, assum;

pseudocode 1f it’s not obvious.

PO, S T G AL Pl A F Pty S BT R T e Nk BN e i st PR i

N0Se you

ntions,

o Invariants on data structures. What goes in

them? When are they defined?

o Test strategy, bugs you want to catch.

Further doc. help

e e e i Eatckande /- PR,

o We’re especially interested in data structure
Invariants.

o We’ll have a template and an example from
P1 available soon.

Schedulin

e e e i Eatckande /- PR,

o Sign up 1n advance for a time slot.

o Signup sheet 1s up front.

o Can do 1t now!

