
Assignment 2
“This time, it’s preemptive”

Ari Rabkin

Preemption

Need to preempt threads for scheduling
fairness.
Use interrupts to regain control
Call minithread_clock_init to get a stream
of interrupts; specify interrupt handler.
Return from handler ends interrupt

Interrupts

Recall that interrupts are delivered on stack
of current thread.
Can call yield to switch threads
Interrupts arrive every PERIOD.
Should update counter (ticks) on each
interrupt

Scheduling

We’re going to do strict priority scheduling.
Keep k queues, one for each priority.
Next thread should come from highest non-
empty queue
Hide complexity inside multilevel_queue.c

Strict priorities

We’re going to have two kinds of threads:
User threads (low priority)
System threads (high priority)
“Run system threads if you can, user
threads if no system threads to run”
Pick new thread every tick.

Hide details

Hide the details of this in multilevel queue
module. You might add more levels later.
Note that this is not a feedback queue.

Alarms

Want stuff to happen at fixed time in future.
Alarms let a thread say “run this code in
200 milliseconds.”
To create alarm, specify function to be
called, argument, and time offset.
Identify alarms with alarm IDs.
See alarm.c and alarm.h

Alarm operations

Two operations on alarms: register and
deregister.
Third operation (invocation) is implicit.

Design choices

Can run alarm procedure in special thread,
or at interrupt time, or...?
Common case is short and small alarms.
Note that if you call at interrupt time,
alarms must be small.
Specify which implementation you chose in
your design doc!

More design choices

Lots of clever things you can do.
But think them through in advance, and
check with us.
This is your chance to be creative and
practice your engineering.

Sleep_with_timeout

Sometimes want to have a thread sleep for
a fixed number of milliseconds.
For instance, network timeouts.
You should add a function to do this.
Can implement timeouts cleanly with
alarms and semaphores.

Measurement

Often want to know how fast code runs.
Add support for per-thread timers
Read them with read_counters() or whatever
you name it.
For each thread, track several quantities.
For each quantity, read clock at start and end
of timeslice, and add difference to counter.

What to measure

Want to measure three things per thread:
wall time, process CPU time, and
minithread time.
Get wall time from GetTickCount in
windows.h
Get CPU time from clock() in time.h
Get minithread time from your tick counter.

What this measures

clock() gives you ticks of CPU time given
to the process (CLOCKS_PER_SEC ticks
per second)
GetTickCount() returns milliseconds since
system boot.
Your counter PERIOD miliseconds. (See
interrupts.h)

Why are these different?

Q: Why can CPU time not match
minithread time?
A: libraries, interrupts off...
Q: Why doesn’t CPU time match wall
time?
A: Other processes!

Reading atomically

Want to read all three counters “atomically”
Easiest way is to define a minithread_stats
struct, and have your read_counters
function return it.
Be sure to make read_counters threadsafe.

Part 5: Prime numbers

A prime number is an integer divisible only
by itself and one.
You’re going to write a random-prime-
generator.

Operates on “small” numbers (order of
108), can use trial division

Prime numbers

Going to also use threads.
One thread to get random, one thread to do
trial division, and a third to print the results
Threads communicate using semaphore-
protected queues.
Need two semaphores; one as mutex on
queue, one to put bound on queue length.

The generator

Generator thread needs to pick ints in range
from 2 to MAXPRIME, where there’s some
#define MAXPRIME xx statement.
xx should be 108 or so.
Use genintrand(int x) to get random
numbers between 0 and x

Declared in random.h

Getting random numbers

Problem: computers are deterministic;
where can random numbers come from?
Solution: seed generator with some
“random” data from world.
Call sgenrand(long seed) with some
random seed. Using time() is common.

Prime testing

Testing is easy. Just divide candidate prime
p by all integers between 2 and sqrt(p).
Remainder zero implies not prime.
Can use % operator to check if a number
divides another:

a%b = remainder when a is divided by b.

Pass primes on to printing thread

The printing thread

Display some of the primes. (Use printf.)
Don’t have to print them all. Tune the
fraction printed so you print a few per
second.
Should periodically (every 10 seconds?)
update with total found per second.
Use time(0) to find seconds since epoch.
Subtract to find elapsed time.

Statistics

Use your stats feature!
Have program display fraction of time
spent in each thread.
Time spent in libraries (per thread)
etc...

Design process

This time, we’d like you to sign up in
advance for a design doc review.
No more than two groups per TA per hour.

What to put in

Same story as last time.
Specify functions — particularly those you
define. Interface, behavior, assumptions,
pseudocode if it’s not obvious.
Invariants on data structures. What goes in
them? When are they defined?
Test strategy, bugs you want to catch.

Further doc. help

We’re especially interested in data structure
invariants.
We’ll have a template and an example from
P1 available soon.

Scheduling

Sign up in advance for a time slot.
Signup sheet is up front.
Can do it now!

