
Assignment 1
Cooperative Multitasking

Ari Rabkin

Implement a queue

Implement a simple threading system

... including a simple scheduler

Implement semaphores

Goals

But first...

Who doesn’t have a partner?

But first...

Who wants a partner?

We strongly recommend working
in pairs or trios for CS 415

...And also...

Who has gotten started?

...And also...

Who has Visual Studio set
up and working?

The base code is available on CMS

cms.csuglab.cornell.edu

Let me know if you can’t access CMS

See the project page for instructions

Use Visual Studio

msdnaa.cs.cornell.edu, or csug

Setup

Linked Lists

Ø

First

Ø

First

Ø

Last

Linked Lists

Ø

First

Ø

First

Ø

LastLast

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack
SPBP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

bazSP
BP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

baz
2
3

SP
BP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

baz
2
5

SP
BP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

2
5

SPBP

baz

foo's regs

baz

Old BP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

SP

baz

foo's regs

baz

Old BP

bar's regs

Old BPBP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

SP
3

Return value goes in a
special register

(Or goes onto the stack)

baz

foo's regs

baz

Old BP

bar's regs

Old BPBP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

SP
3

Return value goes in a
special register

(Or goes onto the stack)

baz

foo's regs

baz

Old BP

bar's regs

Old BPBP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

SP
3

Return value goes in a
special register

(Or goes onto the stack)

5
baz

foo's regs

baz

Old BPBP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack

SP
8

Return value goes in a
special register

(Or goes onto the stack)

5
baz

foo's regs

baz

Old BPBP

Functions and the Stack

int foo(){
 int baz = 2 + 3;
 return bar(baz);
}

int bar(int baz){
 return bat() + baz;
}

int bat(){
 return 3;
}

RegistersStack
BP

SP

8
Return value goes in a

special register
(Or goes onto the stack)

2
baz

5

Threads

Stack 1

Stack 2

Stack 3

Heap

Thread 1

Thread 2

Thread 3

Part 1: A Queue

Objectives
Implement a queue with prepend
Should support Append/Prepend in O(1)

Linked Lists are ideal for this
The queue need not be threadsafe...

... but the rest of the project needs to
be aware of this.

Part 1: A Queue

Fill in the blanks: queue.c/queue.h
Define one or more structures in queue.c
The world sees a queue_t

Just an anonymous pointer
Use coercion to operate on queue_t

(struct myqueue *)q->last

Part 2: Thread Manipulation

Objectives
Implement structures to describe threads
Implement operators for those structures
Implement a scheduler

Fill in the blanks: minithreads.c/.h
Stack manipulation abstracted away by
machineprimitives.h

machineprimitives.h

Creating a stack: minithread_stack_create()
Takes two pointers to stack_pointer_t
Sets the pointed-at values to the SP for
that stack (the top), and a value you can
refer to the stack with (the bottom)
Free stacks by calling
minithread_stack_free(bottom)

machineprimitives.h

Initializing a stack: minithread_initialize_stack()
Pushes two functions onto the stack
The main body function
A cleanup function you should write

The main body returned, the thread should
clean up after itself
Remember, get a function pointer with
&functionName

machineprimitives.h

Swapping stacks: minithread_switch()
Takes 2 pointers to stack tops
Saves the current stack top in one

... after pushing the registers on
Sets the current stack pointer to the other

... and pops the registers off

Bootstrapping

minithread_system_initialize()
Should allocate datastructures as needed
Should create a thread for mainproc
Need an idle thread

Allocate it
Use the existing thread

Part 3: Scheduling

minithread_yield()
Should pick the next thread to run and
then swap it in

Picking the thread
Round robin: use your queue

When a thread yields, enqueue it and
run the next thread on the queue

Part 3: Scheduling

Implement blocking via start() and stop()
minithread_stop()

Removes the current thread from the run
queue and returns an identifier.

minithread_start(t)
Places thread t on the run queue

You can make the thread pointer the identifier.

Cleaning up threads

Who frees a thread’s stack?
Thread itself can’t, or it would be running
on freed memory--dangerous!
Have separate cleanup thread--or do
something cleverer.

Semaphores

Simple synchronization primitive
A value and two operator functions
P(): Decrement the value

If value becomes negative, wait until
another thread V()s

V(): Increment the value
If a thread is waiting, wake it

Semaphores

Perfect for describing producer/consumer
When an object is created you V
When an object is consumed you P
A queue can be used to store the objects

The semaphore ensures an empty
queue won’t be read from.

Part 4: Semaphores

Fill in the blanks: synch.c/.h
Define struct semaphore {}

You can’t assume your functions won’t get
interrupted

Use atomic primitives in
machineprimitives.h

Part 4: Semaphores

Synchronizing access to semaphore data
Simple to do: Turn off interrupts: see
interrupts.h
Don’t do this more than you have to--
turn them back on as soon as you can
Use semaphores instead whenever
possible.

Part 4: Semaphores

How does a thread that P()ed wait for a V()?
Can we decrement? If not, thread should
stick itself on a wait queue and call
minithread_stop()

If there’s a waiting thread, V() should wake it
Just minithread_start() first one on queue.

Testing

Several included tests:
sieve, buffer, etc. Be sure to use them.
That’s necessary but not sufficient testing.

Notes on design doc

Design doc should specify the nontrivial
decisions you need to make.
What structs do you need? What members?
Function invariants, pre and postconditions.
Algorithms? Pseudocode if it isn’t obvious
from specification.
Explain your decisions. Why did you do it?

Design due at end of week

Show us your design by Friday.
We’ll be pretty lenient with grading, but get
us something this week.
Do it in office hours; make an appointment
with one of the graders if you must.
Also submit design to CMS.

Partners, continued

Those of you who don’t have partners--
Match yourselves up!

