
CS 415
Operating Systems Practicum

Spring 2007
Ari Rabkin

Based on slides from Oliver Kennedy

Who am I?

Ari Rabkin (asr32@cornell.edu)

Cornell CS Major/MEng student

So I’ve been through 415...

Office Hours: See course web page

... or by appt: feel free to email

mailto:asr32@cornell.edu
mailto:asr32@cornell.edu

What do We Expect?

You should know some C (or learn quickly)

Six projects turned in on time

Each project builds on the previous ones

Code meets specification

Works correctly and efficiently

Don’t be afraid to ask questions!!

Where are we going?

Six Projects

1) Cooperative Multitasking (Thread basics)

2) Preemptive Multitasking (Preemption)

3) Unreliable Networking (Datagrams)

4) Filesystems

5) Reliable Networking (Streams)

6) Routing (Path vector protocols)

Design Document

At least a week before project due date, you
should meet with course staff, and show
them a “design document.”

1-2 pages

Describe design choices, data structures,
etc.

This is for your benefit, not ours.

Design doc, etc

Include revised design doc with final
submission.

Name it Design.pdf or Design.txt, put it in
project folder.

If you made significant change since
original design, explain why.

Also give test strategy...

Test strategy

Give us a short description (1 paragraph)
of how you tested your project, and why we
should believe it works.

No credit for “I ran the given test progs.”

Most systems bugs are hard to find; do
stress/endurance tests. Lots of data, long
running.

Testing

Include your test programs with your
submission.

Describe them (succinctly) in final design
doc/test strategy

Should be well thought out; need not be
long or time-consuming to write.

Grading projects

Grade made up of several parts: test
results, code review, design document, test
strategy.

5% for test strategy, 10% for design

Rest is a mix of code review and testing

Random Tidbits

Class uses CMS.

http://cms.csuglab.cornell.edu/

2 Class formats (on alternating weeks)

Project assigned

Project questions (You grill me)

Grading

20% per lab OR 12%/16%/20%/24%/28%

C for Java Programmers
Ari Rabkin

based on lecture slides by Tom Roeder and Oliver Kennedy

Why use C?

Prettier than assembly, but close match

“What you see is what you get”

Nothing happens behind your back

Grants low-level access to hardware

You probably know most of it already

Java inherited a lot of C’s syntax

Primitives

Integer Types: int, short, long

short(2 bytes) <= int(2/4) <= long(4/8)

Floating Point Types: float, double

float(4?) <= double(8?)

Character Type: char [signed or unsigned]

String = character array (ends with ‘\0’)

You manage storage!

Control Flow

Mostly same as Java

Except that there’s no boolean type.

Loop condition is true if integer
expression is nonzero

No exception handling; functions return an
error code instead.

Be sure to check return values

Control Flow

if(...) { ... } else { ... }

while(...) { ... }

for(... ; ... ; ...) { ... }

Functions

int myFunc(int myVar) { return myVar; }

myVar = myFunc(4);

Programs start at int main()

The Enum/Typedef

enum maps text in the code to an integer

enum foo { bar, baz, bat };

enum foo myVar = bar;

enum color { blue = 7, green = 137};

typedef creates a new name for a type

typedef int foo;

foo myVar = 3;

The Struct

Structures are like mini-classes

No methods, no inheritance, just variables

struct foo { int bar; int baz; };

struct foo myVar;

myVar.bar = 2

typedef struct foo {int bar;} baz;

baz myVar;

The Union

Syntax is like structs, but only one of the
members is defined at a time; member
storage overlaps.

struct foo { int type; union {int bar; float
baz;} };

Typically use unions inside structs

can refer to either bar or baz, but not both
at same time. Use type to find out.

Arrays

Arrays work like they do in java

... if you know how big the array will be
in advance

...and no .length variable

Be careful with array lengths

Static Array Sizes: int myArray[20]
Dynamic Array sizes: see malloc

Pointers

&var yields the address of variable var

* dereferences or declares a pointer

int *myPointer = &myIntVar;
*myPointer++;

myPointer = (int *)malloc(sizeof(int))
free(myPointer)

Pointers (continued)

You must call free() on each pointer you get
from malloc after you’re done!

You can allocate arrays with malloc()

malloc(sizeof(struct foo) * n)
These work like normal arrays.

Example: Memory

C

Java

Example: Pointer Usage

Special Pointers

Anonymous pointers

void *

Analogous to Java’s Object; weak type

Function pointers

int call_me(float a) { return (int)a; }
int (*fp)(float) = &call_me;
(*fp)(3.0); or...... fp(3.0) ;

Parameter Passing

Consider: b = 3; foo(b); printf(“%d”, b);
void foo(int a) { a += 2; } // outputs 3
void foo(int *a) { (*a) += 2; } //outputs 5
In Java Objects/Arrays behave like case 2

In C Pointers/Arrays behave like case 2

Some gotchas

Declare all variables at top of function.

Free what you malloc, but only once

Be careful with strings...the library string
functions don’t manage storage for you.

Some references

The comp.lang.c FAQ [http://c-faq.com/]

C Traps and Pitfalls, by Andrew Koenig

The C Programming Language, by
Kernighan and Ritchie (slightly dated)

Many other books...

http://c-faq.com
http://c-faq.com

Careful...

No garbage collection, free what you take

Don’t free things that didn’t get malloced

Arrays aren’t bounds checked (and
no .length)

Variables are initially undefined. (Set
pointers to NULL, ints to 0 or whatever)

Check for NULL pointers before each use!

VC2005 is pretty smart. Listen to it.

The Preprocessor

#define FOO 42

#define foo(a,b) (a+b)

#include “myheader.h”

#ifdef / #else / #endif

#ifdef foo means that if foo is not
#defined, everything between that and
#else or #endif will be removed by the
preprocessor

Example: Preprocessor

Why don’t more people use C?

Explicit memory management is a pain

Leaks, Accessing freed memory...

Language features dependent on platform

Size of primitives, Library availability

Limited typechecking

Pointers can be error-prone

Assignment 1
First part: Queues

Ari Rabkin

Part 1: A Queue

Objectives

Implement a queue with prepend

Should support Append/Prepend in O(1)

Linked Lists are ideal for this

The queue need not be threadsafe...

... but the rest of the project needs to
be aware of this.

Part 1: A Queue

Fill in the blanks: queue.c/queue.h
Define one or more structures in queue.c
The world sees a queue_t

Just an anonymous pointer

Use coercion to operate on queue_t
(struct myqueue *)q->last

Memory leaks

C has no garbage collector.

Won’t reuse memory unless you say free.
Program will use too much memory and
crash if you don’t.

Run a stress test, use Windows task
manager to make sure memory usage is
bounded.

More next week...

Next week, I’ll tell you about the rest of
assignment one.
Let us know if you have questions...

See webpage for office hours
Due Feb 8

