CS 415
Operating Systems Practicum

Sprmg 2()07

L L5 TR N
i a0 0t

Ari Rabkin

Based on slides from Oliver Kennedy

Who am [?

e i Lo PRI T L e o T

o Ari Rabkin (asr32@cornell.edu)
o Cornell CS Major/MEng student
o So I've been through 415...

o Office Hours: See course web page

o ... or by appt: feel free to email

mailto:asr32@cornell.edu
mailto:asr32@cornell.edu

What do We Expect‘7

B e e i PP T e o =

o You should know some C (or learn quickly)
o Six projects turned in on time

o Each project builds on the previous ones

o Code meets specification

o Works correctly and efficiently

o Don’t be afraid to ask questions!!

Where are we going?

2 o B _‘ M4me‘lq-%#-ﬂﬂ- h"""-'.':ﬂ:l,ﬂh“ - 'I-'-:-h'____.'q"ﬂ-.ir.l'ﬂ. a -u"i%‘.;r.”“

o Six Projects
o 1) Cooperative Multitasking (Thread basics)
o 2) Preemptive Multitasking (Preemption)
o 3) Unreliable Networking (Datagrams)

o 4) Filesystems

o 5) Reliable Networking (Streams)

o 6) Routing (Path vector protocols)

Design Document

S hh e e L e P PR, £y i e AR

o At least a week before project due date, you
should meet with course staff, and show
them a “design document.”

o I-2 pages

o Describe design choices, data structures,
etc.

o This is for your benefit, not ours.

Design doc, etc

x o .,1._ E - ilﬂ- : LA "'""""'—'-':ﬂ-:ﬂ"“ L ek W T .u‘-i:: PR T P

o Include revised design doc with final
submission.

o Name it Design.pdf or Design.txt, put it in
project folder.

o If you made significant change since
original design, explain why.

o Also give test strategy...

Test strategy

S A i = v VA Pty o e B Rt g Tt s e SN LE e o o el S B e LTy E . 5 Rl

o Give us a short description (1 paragraph)
of how you tested your project, and why we
should believe it works.

o No credit for “I ran the given test progs.”

o Most systems bugs are hard to find; do
stress/endurance tests. Lots of data, long
running.

Testmg

RS % s A ety S e L et g E gt LT LR L TR B e LTy E . iz T it

o Include your test programs with your
submission.

o Describe them (succinctly) in final design
doc/test strategy

o Should be well thought out, need not be
long or time-consuming to write.

Gradmg pr()]ects

P R A Tt T P PR F A A ety S T LTI S e F o S R TIPS gt s i AN

o Grade made up of several parts: test
results, code review, design document, test
strategy.

o 3% for test strategy, 10% for design

o Rest is a mix of code review and testing

Random Tidbits

e S e Tt Lo et TP Lo PP 3

o Class uses CMS.
o http://cms.csuglab.cornell.edu/

o 2 Class formats (on alternating weeks)
o Project assigned

o Project questions (You grill me)

o Grading
o0 20% per lab OR 12%/16%/20%/24%/28 %

C for J ava Pro grammers

e I e B bt Lo iahe, PR SN Syt Tl

Ari Rabkin

based on lecture slides by Tom Roeder and Oliver Kennedy

Why use C?

e L T L L S P gt F e R AN --:».-MWW

o Prettier than assembly, but close match
o “What you see is what you get”
o Nothing happens behind your back

o Grants low-level access to hardware

o You probably know most of it already

o Java inherited a lot of C’s syntax

Primitives

S A i = v VA Pty o e B Rt g Tt s e SN LE e o o el S B e LTy E . 5 Rl

o Integer Types: int, short, long
o short(2 bytes) <= int(2/4) <= long(4/8)

o Floating Point Types: float, double
o float(4?) <= double(8?)

o Character Type: char [signed or unsigned]
o String = character array (ends with \0’)

o You manage storage!

Control Flow

o e 14..5 L = oy ¥ A Pty e B e s o vt ol el AT - ww . ' " T it

o Mostly same as Java
o Except that there’s no boolean type.

o Loop condition is true if integer
expression 1s NOnzero

o No exception handling, functions return an
error code instead.

o Be sure to check return values

Control Flow

Ao T e 14..5 L = oy ¥ A Pty e B e s o vt ol el AT - WW . ' " T it

et st i relse {0)
owhile(...){ ... }

SrOTAL T R e i (R

o Functions

o int myFunc(int myVar) { return myVar, }

o myVar = myFunc(4),

o Programs start at int main()

The Enum/Typedef

S e R R AR
o enum maps text in the code to an integer
o enum foo { bar, baz, bat };
o enum foo myVar = bar,

o enum color { blue = 7, green = 137},

o typedef creates a new name for a type

o typedef int foo,
o foo myVar = 3;

The Struct

ks ok T . = Rttt L T L R T W i ¥ Ao Tl

o Structures are like mini-classes

o No methods, no inheritance, just variables
o struct foo { int bar; int baz; };

o struct foo myVar,

o myVar.bar = 2

o typedef struct foo {int bar;} baz,

o baz mvyVar;

The Union

LU R 2 L Tttt L L T O L

o Syntax is like structs, but only one of the
members is defined at a time; member
storage overlaps.

o struct foo { int type; union {int bar; float
baz;} };

o Typically use unions inside structs

o can refer to either bar or baz, but not both
at same time. Use type to find out.

Arrays
o Arrays work like they do in java

o ... if you know how big the array will be
in advance

o ...and no .length variable

o Be careful with array lengths

o Static Array Sizes: int myArray|[20]

o Dynamic Array sizes: see malloc

Pointers

Ao T e 14..5 L = oy ¥ A Pty e B e s o vt ol el AT - ww . ' " T it

o &var yields the address of variable var
o * dereferences or declares a pointer

o Int *myPointer = &mylIntVar;

o *myPointer++;

o myPointer = (int *)malloc(sizeof(int))

o free(myPointer)

Pointers (continued)

x A PR _‘ M*me‘lﬂ-ﬁ#.h "—'“-T:ﬂq:ﬂh“ e 'I-'-:-h'____.-f'p--.ir.l'ﬂ. a -u"i%‘.:r.”“

o You must call free() on each pointer you get
from malloc after you’re done!

o You can allocate arrays with malloc()

o malloc(sizeof(struct foo) * n)

o These work like normal arrays.

Example: Memory

s, .o R P P A A ety ST B SRS L e et b e Lot P

int main{int argc, char *%grgv)

struct TrackPoint *myTrack 1 malloc({=izeof (struct TrackPoint’i;
updatePoint {myTrack };
printfHd, M, myTrack.color, argy[A]);
frea{myTrack);

public TrackPoint (s
lastPoint {4 new MyPoint(E, B3;

¥

ztruct TrackPoint +mﬂ}HTIﬂ|}PH1anI[

atruct TrackPoint ¥lastPoint = mull

ot TrackPointy |_

LEL ST PR LT]] EERREEERE : i iiiiiiii YT T I LI T I a4

Special Pointers

ks ok T . = Rttt L T L R T W i ¥ Ao Tl

o Anonymous pointers

o void *

o Analogous to Java’s Object; weak type
o Function pointers

o int call me(float a) { return (int)a; }

o int (*fp)(float) = &call_me;
o (*1p)(3.0); ip(3.0) ;

Parameter Passing

u g M4me‘lih L mﬂ:mgh..-. e L L T .Ll'\-i:: T

o Consider: b = 3; foo(b); printf(“%d”, b);
o void foo(int a) { a += 2; } // outputs 3

o void foo(int *a) { (*a) += 2; } //outputs 5

o In Java Objects/Arrays behave like case 2

o In C Pointers/Arrays behave like case 2

Some gotchas

Ao T e 14..5 L = oy ¥ A Pty e B e s o vt ol el AT - ww . ' " T it

o Declare all variables at top of function.

o Free what you malloc, but only once

o Be careful with strings...the library string
functions don’t manage storage for you.

Some references

S A i = v VA Pty o e B Rt g Tt s e SN LE e o o el S B e LTy E . 5 Rl

o The comp.lang.c FAQ [http://c-faqg.com/]

o C Traps and Pitfalls, by Andrew Koenig

o The C Programming Language, by
Kernighan and Ritchie (slightly dated)

o Many other books...

http://c-faq.com
http://c-faq.com

Careful...

AR St A ot Al - e e i et L Ll PRI s e e g

o No garbage collectzon, free what you take
o Don't free things that didn’t get malloced

o Arrays aren’t bounds checked (and
no .length)

o Variables are initially undefined. (Set
pointers to NULL, ints to 0 or whatever)

o Check for NULL pointers before each use!
o VC2005 is pretty smart. Listen to it.

The Preprocessor

S hh e - e ettt L L I e T W i ¥ i e AR

o #define FOO 42
o #define foo(a,b) (a+b)

o #include “myheader.h”

o #ifdef / #else | #endif

o #ifdef foo means that if foo is not
#defined, everything between that and
#else or #endif will be removed by the
preprocessor

Jfcomment the following line out to uze #defines for colors
#define USE_EMLM

#define rec
#define gr
#define b
tvpedef
Fenid

Why don’t more people use C?

g b LY By Tt GBS P v LT DA Pty £ P Bt 2 g W ws L N ity i Tl

o Explicit memory management is a pain
o Leaks, Accessing freed memory...
o Language features dependent on platform

o Size of primitives, Library availability

o Limited typechecking

o Pointers can be error-prone

Assignment 1
F1rst part: Queues

et chadnl, FIPRGTY SR s . e P

Ari Rabkin

Part 1: A Queue

T T m4 L Fl A Pty o e Rt S M va v » el oy H“MWW

o Objectives
o Implement a queue with prepend
o Should support Append/Prepend in O(1)
o Linked Lists are ideal for this

o The queue need not be threadsafe...

o ... but the rest of the project needs to
be aware of this.

Part 1: A Queue

NI b S Tt B PR P AT A ety S S LTSI S e s e PUR T s e

o Fill in the blanks: queue.c/queue.h

o Define one or more structures in queue.c

o The world sees a queue_t

o Just an anonymous pointer
o Use coercion to operate on queue_t

o (struct myqueue *)q->last

Memory leaks

S A i = v VA Pty o e B Rt g Tt s e SN LE e o o el S B e LTy E . 5 Rl

o C has no garbage collector.

o Won't reuse memory unless you say iree.

o Program will use too much memory and
crash if you don't.

o Run a stress test, use Windows task
manager to make sure memory usage is

bounded.

More next week...

Ao T e 14..5 L = oy ¥ A Pty e B e s o vt ol el AT - ww . ' " T it

o Next week, I'll tell you about the rest of
assignment one.

o Let us know if you have questions...

o See webpage for office hours

o Due Feb 8§

