
Your Name: __SAMPLE SOLUTION SET_______________ NetID: _____

CS414 Fall 2003 Final Exam (Version 1)

1. [25 questions, 2 points each, for a total of 50 points]
 True False
a) Consider a CSEnter/CSExit implementation based on this code:
“while(test_and_set(flag) == true) loop;” This algorithm is deadlock-free.

X €

b) The Bakery Algorithm can livelock if two processes happen to pick the
same “number” value. (Hint: code for algorithm is in problem 2).

€ X

c) In the Bakery Algorithm if process i is looping in the
“while(choosing[k]) loop,” process k always enters and exits the critical
section before process i. (Hint: code for algorithm is in problem 2).

€ X

d) In a semaphore-based implementation of the bounded buffer
algorithm, as many as b producers can concurrently enter the critical
section to add an element to the buffer, assuming that the buffer can hold
b objects.

€ X

e) In a semaphore-based implementation of the readers and writers
algorithm, many readers can concurrently obtain read access to the
protected object, but only one writer can access it at a time.

X €

f) A language that supports monitors automatically handles mutual
exclusion. Thus there is no separate CSEnter/CSExit mechanism.

X €

g) The Banker’s Algorithm is deadlock-free because it breaks the “no
preemption” condition, one of four necessary conditions for deadlock.

€ X

h) A machine might be addressable by its IP address on one side of a
network address translator (NAT), but not addressable, at all, from the
other side.

X €

i) In the Internet, the route taken from machine i to machine j is the
reverse of the route from j to i.

€ X

j) UDP leaves flow control to the application developer, whereas flow-
control is built into the TCP protocol.

X €

k) Whereas UDP imposes a size limit for messages sent, TCP imposes no
size limit at all – any object a process can hold in memory can be sent.

X €

l) If neither end-point crashes, a TCP connection is reliable: it hides any
packet loss, duplication or out-of-order packet delivery from the
application.

€ X

m) Akamai uses the DNS to load-balance by “mapping” a single host
name to the closest lightly loaded server in its pool of servers.

X €

n) A demand paging algorithm only pages something out when a page
fault occurs.

X €

Your Name: __SAMPLE SOLUTION SET_______________ NetID: _____

o) If the working set (WS) algorithm is compared with LRU, using the
same value for ∆, WS often requires less physical memory to run a given
program.

X €

p) Spatial locality is defined as a situation in which a program repeatedly
accesses a small set of pages in the working set.

€ X

q) If the WSCLOCK algorithm makes a mistake and something it pages
out is needed again, the page may still be in the reclaim pool.

X €

r) The pages of a mapped file must be pinned into memory because
normal virtual memory management algorithms can’t be applied to
mapped files.

€ X

s) We can simulate the page “reference” and “dirty” bits using memory
protection hardware and taking an interrupt the first time a page is
accessed and/or written. An advantage is that the hardware to manage
the TLB can be simplified, and it can be flushed without writing PTEs
back to the page table.

X €

t) Suppose the trigonometry functions on a computer are in a DLL, and
program “render” has been linked with that DLL. Now suppose that two
instances of render are running simultaneously (on the same computer
but as different processes). If they print the address at which the arctan
function resides in memory, they may print different addresses.

X €

u) An inode includes a count of the number of symbolic links pointing to
the file.

€ X

v) A disk buffer pool may delay writing a block of a file back to disk,
hence if a computer crashes soon after a program updates a file, the
update can be lost.

X €

w) As the NFS is normally configured, it trusts the IP address of a
machine accessing it, the user-id, and the group-id information in each
request.

X €

x) Recursion and reentrancy are basically the same idea. In particular,
any recursive procedure is reentrant, too.

€ X

y) If a program wasn’t written to be multithreaded and you add even a
single additional thread, it is important to make sure that every
procedure is either reentrant, or can’t be reentered.

X €

Your Name: __SAMPLE SOLUTION SET_______________ NetID: _____

2. [20 points] Below is the Bakery algorithm for N threads , using the same code and notation we
employed in class. Recall that (a,x)<(b,y) means “(a < b) or (a=b and x<y)”.

#define true 1
#define false 0
unsigned byte number[N] = { 0, …. 0};
boolean choosing[N = { false, …. false };

Process Pi:
 while (1) {

 do something else

choosing[i] = true;
number[i] = max(number[0]…number[N-1])+1;
choosing[i] = false;
for(k = 0; k < N; ++k) {

while(choosing[k]) loop;
while((number[k]!=0)&&((number[k],k) < (number[i],i))) loop;

}

Critical Section for Process i

number[i] := 0;

}

a) In class when we discussed the algorithm we assumed that a process that enters the critical
section will always make “finite progress” and eventually exit the critical section. But what if this
wasn’t the case? For example, suppose that process i enters the critical section but then goes into
an infinite loop while inside it. What would happen?

If a process can get stuck in the critical section, no other process will be allowed in. Other processes will
pile up in the CS Enter code – in this case, they will be looping in the second while loop.

b) An issue with the algorithm, as shown here, is that the “number” can overflow. Suppose that
number is an array of 8 bit unsigned integers and that process j experiences such an overflow:
“max” returns 255, so process j picks number[j] = 0. Define safety very briefly and indicate
whether safety could be violated in this situation. If not, explain why, and if so, show us how it
happens.

Your Name: __SAMPLE SOLUTION SET_______________ NetID: _____

Safety can definitely be violated. Process j has number[j]=0, but the algorithm will interpret this as an
indication that j is not in the critical section and not trying to enter! Thus j can enter (it has the smallest
possible “number” value) and any other process will be able to enter too, while j is still inside.

c) Suppose that you are hired by a company doing a new operating system for a uniprocessor. You
are asked to implement critical sections for a user-level threads package (e.g. not in the O/S itself).
The threads package will in turn be used to implement a programming language that supports
monitors. Would the Bakery algorithm be your first choice? Why?

On a uniprocessor, the only concurrency is due to explicit scheduling. A busy-waiting algorithm such as
the Bakery Algorithm would be a poor choice because it would waste CPU time: if pi wants to enter the
critical section and must wait for pj to exit, we don’t want pi to sit in a loop. We would prefer to context
switch to pj as soon as possible!

(Obviously, you would also object to the use of potentially buggy code associated with overflow in the
code shown here, but there is a simple way to fix that, and this isn’t the answer we were looking for.)

d) Suppose that when process j calls CSEnter, process i is already inside, and that number[i] = 25.
Process j picks number[j] = 26 and is ”about” to execute chosing[j] = false. Is it possible that
process i could leave the critical section and yet reenter it before j is able to do so? Explain.

Yes, it is possible. Suppose that we context switch away from pj leaving it “about” to chose number 26.
Process pi now leaves the critical section, setting its own number to 0, zips to the CS Enter code, and
executes it. If nobody else has chosen a number so far, pi will pick number 1! Now, pi has number[i]=1,
and pj will eventually finish setting number[j]=26. So pi can get back in (once) before pj.

There is also another scenario in which pi can pick 26, just as pj did (namely, if some other process pk
hasn’t entered yet and had number[k]=25). In that case, i gets in before j if i<j.

Any correct scenario will get you full credit.

3. [25 points] Write a monitor to solve the following synchronization problem.

There are three threads in an application:

• Threads A and B produce endless streams of objects of types a, and b respectively.
• Thread C is a rendering application: it waits for one object each from A and B, (one

of each type), then renders them on the screen, then goes back for more.

Your monitor should have two entry points:

• produce_object(object o, string thread_id), where “thread_id” will be either “A”,
“B”, and object o is of type a or type b, respectively.

• consume_objects(out object oset[2]). Waits for two objects, and then returns them in
the “out” variable oset, setting oset[0] = obj_a, and oset[1] = obj_b.

To maximize performance, design the monitor to allow the producer threads to get a little
ahead of the consumer, but not enormously. In particular, a parameter K is predefined with

Your Name: __SAMPLE SOLUTION SET_______________ NetID: _____

some small value, like 5, and the monitor shouldn’t block a producer thread unless it gets
more than K objects “ahead” of the consumer.

/*
 * This is just a standard producer-consumer monitor
 * except that it has two side-by-side buffers.
 */
monitor prodcom {
 int cnt_a = 0, cnt_b = 0;
 int ao_pt = 0, ai_pt = 0;
 int bo_pt = 0, bi_pt = 0;
 condition needa, needb, havea, haveb;
 object buf_a[0..K-1], buf_b[0..K-1];

 void consume_objects(out object oset[2]) {
 if(cnt_a == 0) needa.wait();
 if(cnt_b == 0) needb.wait();
 oset[0] = buf_a[ai_pt++ % K];
 oset[1] = buf_b[bi_pt++ % K];
 cnt_a--; cnt_b--;
 havea.signal();
 haveb.signal();
 }

 produce_object(object o, string thread_id) {
 if(thread_id == “A”) {
 if(cnt_a == K) havea.wait();
 cnt_a++;
 buf_a[ao_pt++ % K] = o;
 needa.signal();
 } else {
 if(cnt_b == K) haveb.wait();
 cnt_b++;
 buf_b[bo_pt++ % K] = o;
 needb.signal();
 }
 }
}

Your Name: __SAMPLE SOLUTION SET_______________ NetID: _____

4. [5 points]. You are hired to help tune up the performance of a Web server program that
sends documents over TCP. Using a TCP monitoring tool, you carefully measure the speed of
data transfer between the server and a client. After discarding the first 30 seconds of data to let
things “settle down”, the throughput works out to 5K bytes/second (the dashed line). Yet when
you graph the speed of the connection for the next few minutes, you obtain the graph shown
below. Explain whether the “erratic” behavior evident in the graph is a sign of a problem that
needs to be fixed. What could cause this sort of erratic throughput? Given that the network is
in a stable state, why is the performance so variable? Be brief!

The graph shows typical behavior for TCP. The protocol constantly tries to push its bandwidth up,
and it does this by incrementing its “window size” (in effect, its sending rate). But as the rate rises
the connection will eventually become overloaded or a router will overload and data will be lost.
When this happens, TCP halves its sending rate. So you get the sawtooth seen in the graph.

Time →

Bandwidth (bytes/sec)

10K

 5K

 0

