
On the Effectiveness of
DNS-based Server Selection

Anees Shaikh Renu Tewari Mukesh Agrawal

Abstract— The rapid growth of the Internet in users and content has
fueled extensive efforts to improve the user’s overall Internet experience.
A growing number of providers deliver content from multiple servers or
proxies to reduce response time by moving content closer to end users. An
increasingly popular mechanism to direct clients to the closest point of ser-
vice is DNS-based redirection, due to its transparency and generality. This
paper draws attention to two of the main issues in using DNS: 1) the neg-
ative effects of reducing or eliminating the cache lifetimes of DNS infor-
mation, and 2) the implicit assumption that client nameservers are indica-
tive of actual client location and performance. We quantify the impact of
reducing DNS TTL values on web access latency and show that it can in-
crease name resolution latency by two orders of magnitude. Using HTTP
and DNS server logs, as well as a large number of dial-up ISP clients, we
measure client-nameserver proximity and show that a significant fraction
are distant, more than 8 hops apart. Finally, we suggest protocol modifica-
tions to improve the accuracy of DNS-based redirection schemes.

I. INTRODUCTION

An emerging focus of Internet infrastructure services and
products is to improve each user’s overall Web experience by
reducing the latency and response time in retrieving Web ob-
jects. Numerous content distribution services claim improved
response time by placing servers closer to clients, at the edges
of the network, and transparently directing clients to the “near-
est” point of service, where near refers to low round-trip delay,
small number of hops, or least loaded server.

An increasingly popular technique for directing clients to
the nearest server is to perform the server selection func-
tion during the name resolution phase of Web access, using
the Domain Name System (DNS). The DNS provides a ser-
vice whose primary function is to map domain names such as
www.service.com to the IP address(es) of corresponding
machine(s). The transparent nature of name resolution can be
exploited to redirect clients to an appropriate server without re-
quiring any modification to client software, server protocols, or
Web applications. The appeal of DNS-based server selection
lies both in its simplicity – it requires no change to existing pro-
tocols, and its generality – it works across any IP-based applica-
tion regardless of the transport-layer protocol being used. Other
approaches such as application-layer redirection (e.g., HTTP
redirection), application-specific communication protocols, or
routing protocol modifications, are often too complex or too lim-
ited in function.

Several commercial content distribution services (e.g., Aka-
mai, Digital Island), currently use modified DNS servers to dy-
namically redirect clients to the appropriate content server or

A. Shaikh and R. Tewari are with the IBM T.J. Watson Research Center,
Hawthorne, NY, USA. E-mail: faashaikh,tewarirg@watson.ibm.com .

M. Agrawal is with Carnegie Mellon University, Pittsburgh, PA, USA. Email:
mukesh@cs.cmu.edu. This work was done while he was visiting the IBM T.J.
Watson Research Center from the University of Michigan.

proxy. When the nameserver receives a name resolution re-
quest, it determines the location of the client and returns the
address of a nearby server. In addition to these distribution ser-
vices, several commercial products use DNS-based techniques
for wide-area load balancing across distributed Web sites. Ex-
amples of such products include Cisco Distributed Director, F5
3/DNS, and Nortel/Alteon WebOS.

Given the increasing use of DNS for associating clients with
the right server, the question of whether DNS is the right lo-
cation for this function remains largely unexplored. This pa-
per investigates this question by considering two key issues in
DNS-based server selection. First, in order to remain responsive
to changing network or server conditions, DNS-based schemes
must avoid client-side caching of decisions, which potentially
limits the performance and scalability of the DNS. Second, in-
herent in the DNS-based approach is the assumption that clients
and their local nameservers are proximal. When DNS-based
server selection is used to choose a nearby server, the decision is
based on the nameserver’s identity, not the client’s. Thus when
clients and nameservers are not proximal, the DNS-based ap-
proach may lead to poor decisions.

The Domain Name System (DNS) is a distributed database
of records (e.g., name-to-address mappings) spread across a
semi-static hierarchy of servers [1], [2]. The system scales by
caching resource records at intermediate name servers. Each
resource record has a time-to-live (TTL) value that determines
how long it may be cached, with typical TTL values on the or-
der of days [3]. When the DNS is used for server selection it
requires that caching of name resolution results be disabled, by
setting TTL values to zero (or very small values). Small TTL
values allow fine-grained load balancing and rapid response to
changes in server or network load, but disabling caching re-
quires that clients contact the authoritative nameserver for ev-
ery name resolution request, increasing Web access latency. In
addition, small TTL values could significantly degrade the scal-
ability of the DNS, since many more requests would have to be
transmitted in the network, rather than being served from local
nameserver caches.

Another, more subtle, issue arises when DNS-based redirec-
tion is used to find a server or replica nearby the client. DNS-
based redirection assumes that the client’s local nameserver is
representative of the client with respect to location or network
performance. If the client and nameserver are distant from each
other, the client could be directed to an unsuitable server. It is
easy to imagine cases where clients and their nameservers are
not co-located, for example in large dial-up or broadband ISPs
where widely distributed clients share a nameserver. Moreover,
the local nameserver could easily be misconfigured. On the



other hand, when a client proxy or firewall doubles as a name-
server, basing redirection decisions on the nameserver location
is likely to be quite accurate.

In this paper, we draw attention to these two issues and quan-
tify their impact on DNS-based server selection schemes. Our
main contributions are:
� quantification of the impact of low DNS TTL values on client-
perceived latency;
� extensive measurement and analysis of client and local name-
server proximity.

Using data from an ISP proxy as well as popular Web sites,
we empirically study and quantify the impact of low DNS TTL
values used in many content distribution networks (CDNs). In
particular, we quantify their effect on client-perceived latency
when accessing web pages with multiple embedded objects.
Previous studies have measured name resolution latency in a
general sense, but not in situations where the amount of DNS
caching is controlled or where the effects of embedded objects
are quantified.

We conduct an extensive study of the proximity of ISP clients
to their local nameservers to gauge the potential inaccuracy of
using the identity of the client’s nameserver to make server se-
lection decisions. To our knowledge there has been no earlier
work on analyzing client-nameserver proximity as it relates to
server selection.

Our results show that without careful tuning of TTL values,
client latency can increase by up to two orders of magnitude,
especially as more embedded objects in Web pages are served
from content distribution services. Additionally, many clients
and their nameservers are topologically distant from each other.
Our experiments show that typical client-nameserver distance
is 8 or more hops. Furthermore, we find that latency measure-
ments from server sites to nameservers are poor indicators of the
corresponding client latencies.

In the next section we give a brief overview of basic DNS
operation. Section III discusses and quantifies the effects of us-
ing small TTL values on client-perceived Web access latency.
Section IV presents a quantitative analysis of the distance be-
tween clients and their local nameservers using DNS and HTTP
logs from a commercial web site, as well as a large number of
dial-up ISP clients. Section V briefly suggests a modification to
the DNS protocol to address the problem of identifying clients
during name resolution. Section VI summarizes some represen-
tative related work and Section VII concludes the paper.

II. DNS: A BRIEF OVERVIEW

At its most basic level, the DNS provides a distributed
database of name-to-address mappings spread across a hierarchy
of nameservers. The namespace is partitioned into a hierarchy
of domains and subdomains with each domain administered in-
dependently by an authoritative nameserver. Nameservers store
the mapping of names to addresses in resource records, each
having an associated TTL field that determines how long the en-
try can be cached by other nameservers in the system. A large
TTL value reduces the load on the nameserver but limits the fre-
quency of update propagation through the system. The different
types of resource records and additional details about the DNS

authoritative
nameserver
(ns.service.com)

client
nameserver

client

www.service.com servers

5. rep: IP addr 12.100.104.3

root nameserver

2. req: www.service.com
3. rep: ns.service.com (12.100.104.1)

6. rep: IP addr 12.100.104.3

12.100.104.3

12.100.104.1

7. connect to server

1. req: www.service.com

4. req: www.service.com

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Fig. 1. Basic DNS operation: This example shows the basic steps required for
a client to resolve the address of a service at www.service.com.

are described in [1], [4]. The most widely used nameserver im-
plementation in the DNS is the Berkeley Internet Name Domain
(BIND) [5].

Nameservers can implement iterative or recursive queries. In
an iterative query, the nameserver returns either an answer to the
query from its local database (perhaps cached data), or a refer-
ral to another nameserver that may be able to answer the query.
In handling a recursive query, the nameserver returns a final an-
swer, querying any other nameservers necessary to resolve the
name. Most nameservers within the hierarchy are configured to
send and accept only iterative queries. Local nameservers, how-
ever, typically accept recursive queries from clients (i.e., end-
hosts).

Figure 1 illustrates how a client typically finds the address
of a service using DNS. The client application uses a resolver,
usually implemented as a set of operating system library rou-
tines, to make a recursive query to its local nameserver. The
local nameserver may be configured statically (e.g., in a system
file), or dynamically using protocols like DHCP or PPP. After
making the request, the client waits as the local nameserver iter-
atively tries to resolve the name (www.service.com in this
example). The local nameserver first sends an iterative query to
the root to resolve the name (steps 1 and 2), but since the sub-
domain service.com has been delegated, the root server re-
sponds with the address of the authoritative nameserver for the
sub-domain, i.e., ns.service.com (step 3)1. The client’s
nameserver then queries ns.service.com and receives the
IP address of www.service.com (steps 4 and 5). Finally
the nameserver returns the address to the client (step 6) and the
client is able to connect to the server (step 7).

III. IMPACT OF DNS TTL VALUES

The scalability and performance of the DNS largely depends
on the caching of resource records across intermediate name-

1Presumably, the client’s nameserver caches the address of the
ns.service.com to avoid repeatedly querying the root servers.



total HTTP requests 34868
unique server names 581

unique URLs 7632
duration of trace 6 hrs

(10am-1pm, 6pm-9pm)
trace date February 1999

TABLE I

ISP PROXY LOG STATISTICS

servers. Caching is controlled by the TTL value, which in turn
depends on the frequency with which administrators expect the
data to change. For example, Internet RFC 1912 recommends
minimum TTL values around 1–5 days [3]. Earlier documen-
tation had recommended 1 day as the minimum TTL for most
servers and around 4 days for top-level domains [6]. These val-
ues are now considered too small. Once a domain stabilizes,
values on the order of three or more days are recommended. A
recent study shows, however, that a majority of nameservers use
a default TTL value of 86400 seconds (or 1 day) for their do-
main [7].

Apart from intermediate nameservers, name resolution results
are also cached by Web browsers as a performance optimiza-
tion. The resolver library typically does not return the TTL
value with the query result, so browsers use their own policies
for caching. For example, the default value used in recent ver-
sions of Netscape Communicator is around 15 minutes. Since
client-side caching by browsers is often not configurable, we
only focus on caching effects at nameservers in this section.

DNS-based server selection radically changes the magnitude
of TTL values and, correspondingly, the benefits of caching at
local nameservers. To achieve fine-grained load balancing in
these schemes, the TTL values returned by authoritative name-
servers are typically very small (e.g., 20 sec) or set to zero.
These small TTL values affect performance in two related ways:
(i) they increase cache misses, thereby increasing the number of
queries that must be handled by the authoritative nameserver
(along with the corresponding network traffic), and (ii) they in-
crease the client latency due to the extra name resolution over-
head for each URL access.

One might argue that an increase in request traffic to authori-
tative DNS servers is not a major concern, given the CPU power
of modern servers. Current high-end Web servers are able to
process and service several thousands of simultaneous HTTP
GET requests [8], each of which is likely to incur much higher
overhead than handling name resolution requests, which require
simple lookups and single-packet responses. And in the case of
Web access, the number of name resolutions is bounded by the
number of URL accesses. Thus it is reasonable to expect that
modern servers would be able to keep pace with DNS requests.
Early studies showed that the increase in network traffic due to
additional UDP DNS packets is not insignificant [9], however,
and would be even higher as caching in the DNS is reduced.

For client-observed latency, on the other hand, TTL values
have a much greater impact. To quantify this effect, we first an-
alyzed the overhead of a single name resolution and compared it
to the total Web page download latency. Second, we determined

Nameserver cache contents Median
latency

root and .com only (case i) 200 ms
domain nameserver (case ii) 60 ms

server address (case iii) 2.3 ms

TABLE II

NAME RESOLUTION LATENCY

the distribution of embedded objects (e.g., images and advertise-
ments) in Web pages across multiple servers by analyzing logs
at an ISP proxy as well as from the top-level pages of the most
popular Web sites. Based on this data, we computed the frac-
tion of time the client spends in the name resolution phase for a
typical Web page access when TTL values are small or 0.

A. Name Resolution Overhead

To quantify name resolution overhead we analyzed the time
spent in the various phases of a typical Web page access. A
Web page download consists of the following basic steps: server
name resolution, TCP connection establishment, transmission of
the HTTP request, reception of the HTTP response, reception of
data packets, and TCP connection termination. Using HTTP/1.0
results in repeating the the above steps for each embedded object
within a composite page. Note that when the embedded objects
are stored on another server (e.g., servers in a content distribu-
tion service), having HTTP/1.1 support for persistent TCP con-
nections across multiple HTTP requests does not eliminate the
first two steps.

To compute the DNS overhead we compiled a list of server
names from the proxy logs at a single point-of-presence (POP)
location of a medium-sized ISP. Table I shows the statistics for
the fraction of the trace analyzed. We ran a local nameserver
(BIND version 8.2.1) at four different locations (Massachusetts,
Michigan, California, and New York) and used it to resolve the
various server names found in the logs. We measured the name
lookup overhead by timing the gethostbyname() system
call for each server hostname. The measurements were for three
levels of caching: (i) the local nameserver cache had neither the
server address nor the address of the authoritative nameserver
for that sub-domain, (ii) the local nameserver cache had the au-
thoritative nameserver’s address, and (iii) the local nameserver
cache had the server’s address in its cache.

We initially configured the local nameserver to have the ad-
dresses of the 13 root DNS servers in its cache. The cache was
then primed to contain the addresses of the .com domain name-
servers. Together, this setup represents case (i) discussed above
where the local nameserver had neither the server IP address
nor the corresponding authoritative nameserver address in its
cache. After each run of the experiment, the local nameserver
was restarted to flush the local cache contents. For case (ii), the
nameserver cache was primed to contain the address of the au-
thoritative nameserver for each of the domains. Case (iii) mea-
sured the time for a cache hit, i.e., when the server address was
in the local cache. The median name resolution times for the
three levels of caching, measured from the New York site, are
shown in Table II. The results show that caching reduces the



0 1000 2000 3000 4000 5000 6000
Name resolution time (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti

ve
 f

re
q

u
en

cy
 d

is
tr

ib
u

ti
o

n
 (

C
D

F
)

Massachusetts
New York
Michigan
California

0 1000 2000 3000 4000 5000 6000
Name resolution time (ms)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n
 f

re
q

u
en

cy
 (

C
D

F
)

Massachusetts
New York
Michigan
California

(a) Proxy logs (b) Popular sites

Fig. 2. Name resolution overheads: The graph in (a) shows the distribution of name resolution latency for the sites from ISP proxy logs when neither server nor
authoritative DNS server addresses are cached locally. In (b) we show the overhead for the most popular sites.

median name resolution time by more than two orders of mag-
nitude (from 200 ms to 2.3 ms). With TTL values set to 0 this
extra overhead adds to the client-observed latency.

To further validate these results, we obtained a list of popu-
lar Web sites compiled by an Internet measurement service [10]
and repeated the name lookup experiments. According to the
service, these sites had a combined user population of 76 mil-
lion clients. Figures 2(a) and (b) show the distribution of name
resolution latency for servers (case i) for both the proxy logs
and the popular Web sites, respectively. The times were mea-
sured from four different locations on the Internet. The New
York results show, for example, that 25% of the name lookups
(with no caching) add an overhead of more than 3 seconds for
the ISP proxy log sites, and more than 650 ms for the popular
sites. respectively. It is interesting to observe that nearly 15% of
the popular sites required more than 5 seconds to contact the au-
thoritative nameserver and resolve the name. This is likely to be
related to the 5-second default request timeout in BIND-based
resolvers [2].

B. Impact of Embedded Objects

Most Web pages accessed today contain a number of em-
bedded objects. These objects, including images and advertise-
ments, may be stored at the same Web server or possibly at a
different server belonging to a content distribution service. In
cases where the embedded objects are not co-located, each ob-
ject access may require an additional name resolution. In this
section we quantify the name resolution overhead per embed-
ded object, beginning with a determination of the distribution of
embedded objects per Web page.

The logs we obtained from the ISP proxy (see Table I) were
packet traces collected using the iptrace2 tool available on
AIX. The packet traces logged information about the packet
contents including IP and TCP headers, HTTP request and re-

2iptrace is similar in function to tcpdump.

sponse headers, and the list of embedded objects within each re-
quest (i.e., all < img src ... > tags). From these traces
we extracted a list of embedded objects within each composite
page. To further substantiate the results, and also study more
current data, we also analyzed the top-level pages from the pop-
ular Web sites, determining the number of embedded objects for
each. For the popular sites the embedded objects included im-
ages, advertisements, and also objects or page fragments that
are generated via a URL-designated script. An example of the
latter might be a link to an off-site server script which generates
weather data for a personalized Web page.

The distribution of the number of embedded objects in both
data sets is shown in Figure 3. The ISP logs show an average
of 14 and a median of 5 embedded objects per page. The index
pages of the popular sites have much higher values, an average
of 35 and a median of 25 objects per page. These results are
similar to those observed in [11].

For the index pages of the popular Web sites we determined
the download time for each embedded object along with the
composite page, and compared it to the name resolution latency.
We used Page Detailer to measure the download time for each
object. Page Detailer is a tool that enumerates the objects con-
tributing to Web page access latency and measures the time to
retrieve each embedded object [12] .

We primed the local nameserver cache and the browser cache
to contain all the server addresses (of the popular sites) such that
the measured time consisted only of the page download time and
had no name resolution overhead. The average page download
times and the object sizes, measured from the New York site,
are shown in Table III.

The results show that if all the embedded objects were stored
on the same server, such that only one name resolution was re-
quired for the entire composite page (e.g., with HTTP/1.1 or
when the TTL returned by the nameserver is non-zero), the
name resolution overhead is quite small. When neither the
nameserver nor the server address is in the cache (case i), how-



0 10 20 30 40 50 60
Number of embedded images

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n
 f

re
q

u
en

cy
 (

C
D

F
)

proxy logs
popular sites

Fig. 3. Embedded object distribution: This graph shows the distribution of
the number of embedded objects per Web page from the ISP proxy sites and
the most popular Web sites.

ever, the overhead grows to about 3% (200 ms for the name res-
olution versus about 6 seconds for the entire page download).

The name lookup overhead becomes an order of magnitude
higher when each embedded object requires an additional name
lookup. This might occur, for example, when objects are served
from different servers belonging to a content distribution ser-
vice. From our experimental results in Table II, performing a
name lookup for each embedded object adds an overhead of
48% on a cache miss (200 ms for the name lookup and 415
ms for the embedded object download). The large name resolu-
tion overhead suggests several considerations: additional DNS
queries should be amortized over large page downloads, and em-
bedded objects should be co-located, as much as possible, to
avoid multiple DNS queries.

Our analysis of top-level pages at the popular sites showed
that each Web page requires, on average, 3:7 name resolution
operations. That is, one for the server name itself, and 2:7 ad-
ditional name lookups for embedded objects located on other
servers. Thus, when accessing a single page, the overhead due
to name resolution can be significant, and is likely to increase as
more objects are delivered from alternate servers or content dis-
tribution services. For example, we observed one case among
the popular sites with 12 objects on the top-level page, 8 of
which were located on different servers.

We also computed the average number of name resolution op-
erations required per object as the ratio of name lookups per
page to the number of embedded objects per page. The ra-
tio came to 0:13, indicating that, on average, about one name
lookup is required for every 8 objects downloaded.

The DNS TTL value should balance the tradeoff between re-
sponsiveness of DNS-based server selection, client-perceived
latency, and overall scalability of the system. It is important for
site administrators to understand these tradeoffs before selecting
small TTL values. The problem of selecting TTLs arises from
the basic limitation of having no mechanism to flush cached
name-to-address mappings in client-side nameserver caches.

avg. complete page download time 6:3 sec
avg. total page size 30:9 KB

avg. embedded object size 1:22 KB
avg. embedded object download time 0:415 sec

TABLE III

PAGE DOWNLOAD STATISTICS

One simple solution is to use larger TTL values to provide only
coarse-grained load balancing at the DNS level. Another ap-
proach avoids overloading basic DNS functionality, but instead
relies on new services or protocols for load-balancing and server
selection. For example, Web servers can direct clients to the best
proxy or alternate server by creating dynamic HTML pages with
embedded links pointing to the best server, or by using HTTP
redirection. These approaches are not without drawbacks, how-
ever. Dynamic pages with rewritten hyperlinks cannot be cached
and HTTP redirection suffers from additional TCP connection
establishment latency.

IV. CLIENT-NAMESERVER PROXIMITY

DNS-based server selection schemes typically assume that
clients and their primary nameservers share network perfor-
mance characteristics by virtue of being located close to each
other. When handling a name resolution request, the DNS server
performing the server selection typically sees only the client
nameserver as the originator. It has no way of knowing who
the actual client is, or how far the client is from its nameserver.
The conventional solution to this problem is simply to assume
that the client and nameserver are located nearby each other. In
this section we evaluate the validity of this assumption empiri-
cally using two approaches, first based on data traces and then
on experiments with several ISPs.

Proximity could be measured directly between the client and
nameserver, in terms of network hops, intradomain routing met-
rics, or round-trip time. But for the purposes of DNS-based
server selection, the direct client-to-nameserver distance is less
relevant. The accuracy of server selection decisions is more
directly influenced by whether clients and nameservers appear
nearby when observed externally, for example from server sites.
Hence, in this section we focus on proximity metrics that are
measured from arbitrary sites in the Internet.

Our initial approach was to collect traces of HTTP and DNS
requests from a production web site and use them to match
clients to their nameservers. We then determined the distance
between these clients and their nameservers, as seen from a
probe site in the network. In Section IV-D we used dial-up ISP
accounts to conduct experiments to determine client-nameserver
proximity as seen from multiple probe sites.

A. DNS and HTTP Data

We obtained DNS and HTTP server logs from a commercial
web site hosted by IBM Global Services. The site is config-
ured with a group of several servers that provide access to a
Web-based service. Incoming connections from clients are di-
rected to one of the servers by a load-balancing layer-4 switch



Clients Client
nameservers

unique IP addresses 32; 919 3807

common IP addresses 497
unique AS numbers 886 805

HTTP requests DNS requests

no. of requests 1; 455; 199 288; 581

duration of trace 48 hrs 39:5 hrs
avg. request rate 8:42 req/s 2:03 req/s

TABLE IV

DNS AND HTTP LOG STATISTICS

which accepts requests on virtual IP address(es). The authorita-
tive DNS server for the subdomain, co-located at the site, han-
dles name resolution requests, and returns answers with a TTL
of 0. The logs, collected over 2 days, contain DNS requests and
the client HTTP requests on the corresponding web servers. The
DNS logs contain the IP address of the requesting nameserver,
the name being resolved, the IP address returned, and the times-
tamp. The HTTP logs contain only the client IP address and the
timestamp. Table IV shows some basic statistics about both sets
of logs.

We used information in the global Internet Routing Registry
(IRR) to determine autonomous system (AS) numbers for each
IP address [13], [14]. We constructed a local copy of the avail-
able IRR databases and used it to lookup AS numbers. ISPs vol-
untarily publish policy and route information in the IRR, thus its
contents are incomplete. In our traces we could not identify the
AS numbers for 6% of client IP addresses and 5% of nameserver
IP addresses using the routing registry.

B. Matching Clients and Nameservers

Before characterizing client-nameserver proximity we used
the logs to match clients with their configured nameservers. We
relied primarily on timestamps for the correlation of DNS re-
quests with HTTP requests. Since the authoritative DNS server
returns addresses with a zero TTL, we would expect each HTTP
request to have a corresponding DNS request. Several factors
complicated this process, however:
� clock skew: The DNS server and HTTP servers run on sepa-
rate machines which are not synchronized. Moreover, the clock
skew of the DNS machine relative to each HTTP server machine
may be different.
� client caching: Although the DNS server at this site is config-
ured to return answers with a zero TTL, client browsers typically
cache the result of name resolutions. So despite the zero TTL,
a request in the HTTP server log may not have a corresponding
request in the DNS server log.
� mishandling of TTLs: Some older BIND nameservers are
known to enforce a minimum TTL on received DNS informa-
tion, even if the TTL is zero [6]. Thus, some HTTP requests
may not have corresponding DNS requests even after account-
ing for client-side caching.

The process of matching clients and their nameservers is sub-
ject to inaccuracy (due to the factors above); hence, we devel-

oped a multi-step algorithm to remove as much uncertainty as
possible. Since we relied on timestamps to perform the match-
ing, we first tried to identify the relative clock skew between the
DNS server and each of the web server machines using IP ad-
dresses that are common to both the DNS and HTTP logs. We
assumed that these addresses are proxies or firewalls that per-
form both HTTP and DNS requests on behalf of clients, and
considered such cases to be certain matches. Using these cer-
tain matches we determined the mean clock skew and used it in
the subsequent steps. What we refer to here as clock skew also
includes the delay between the name resolution request and the
corresponding HTTP request.

In the first pass we considered each HTTP request in turn
and constructed a list of candidate nameservers with a nearby
timestamp (with “nearby” defined as within a 4-10 second win-
dow), accounting for the skew and the expected browser caching
(which we assume is approximately 15 minutes). The second
pass performed the same process in reverse, considering each
nameserver address sighting in the DNS logs and constructing a
list of likely clients served by the nameserver, according to the
timestamp and the name being queried. Finally, we combined
the two sets of candidate lists to identify client-nameserver pairs
that appeared in both lists. Using this process we were able to
find candidate lists for 2394 clients (approximately 10% of all
clients). More than 60% of these clients matched to one name-
server. Note that these candidate lists are based on matching
clients and nameservers using only timestamps.

When a client matched to more than one candidate name-
server, we used some simple heuristics based on AS number and
domain name to decide if a client and nameserver do in fact be-
long together. Basically, when presented with several candidate
nameservers, we pick the nameserver that has either the same
AS number or domain name as the client. Using these conserva-
tive heuristics, we were able to find 324 client-nameserver pairs
(14% of the clients for which a candidate list was found using
timestamps).

C. Proximity Evaluation Using Access Logs

After determining the set of client-nameserver pairs from the
DNS and HTTP logs, the next step was to determine the prox-
imity of clients to their nameservers. Some simple metrics of
proximity include relatively static parameters such as AS num-
ber, domain name, and IP address prefix. Since we used domain
names and AS numbers as heuristics to determine matching
pairs, evaluating these metrics is somewhat misleading. Hence,
we did not consider them further. If we assume that IP prefix
lengths are one, two, or three octets, we found that 37%, 19%,
and 10% of the client-nameserver pairs shared the same prefix.
It should be noted, however, that although nearly 50% of actual
Internet address prefixes are 24 bits, there are a large number
that are between 16 and 24 bits [15]. Therefore, these numbers
may underestimate the actual matches if the real prefix length is
not 8, 16, or 24 bits.

A better metric for determining client-nameserver proxim-
ity is network hops which we measured from a probing site
in the network that might represent, for example, a candidate
server site. We used the traceroute tool to learn the network



B

C

F

G
D

EH

A

probe

client
nameserver

machine

��
��
��
��

��
��
��
��

1 3 5 7 9 11 13 15
Cluster size in hops

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n
 f

re
q

u
en

cy
 (

C
D

F
)

(a) Clustering clients and nameservers (b) Distribution of cluster sizes

Fig. 4. Client and nameserver clustering (router hops): In (a) we illustrate how clients and nameservers are clustered within x number of hops using path
information gathered from the probe site. The graph in (b) shows the distribution of the cluster sizes.

path from the probing site to the client and nameserver. Then
we found the maximum hopcount until a common ancestor ap-
pears in the paths to determine the “cluster” size of the client-
nameserver pair. The cluster size is thus defined as the max-
imum disjoint path length. This process is illustrated in Fig-
ure 4(a). RouterC is the first common ancestor on the two paths
from the probe site. Since C is 4 hops away from the client and
3 hops away from the nameserver, we say that this pair belongs
to a max(3; 4) = 4-hop cluster. If both paths were the same ex-
cept for the last hop (i.e., client and nameserver both connected
to router H), then the client and nameserver belong to a 1-hop
cluster.

Figure 4(b) shows the distribution of cluster sizes for the
client-nameserver pairs we identified. Notice that only about
15% of the pairs are in 1-hop clusters. The median cluster size
is 5 and more than 30% of the pairs are in 8-hop clusters, in-
dicating that a large fraction of clients are topologically distant
from their nameservers when measured from an arbitrary point
in the network. Furthermore the matching process is conser-
vative, since it removed misconfigured client-nameserver pairs.
The actual number of clients that are topologically distant from
their nameservers is likely to be higher.

D. ISP Proximity Experiments

To further evaluate client-nameserver proximity, we con-
ducted experiments with ISP clients that connect using dial-up
PPP connections. In most cases, dial-up ISPs provide primary
and secondary nameserver IP addresses along with the local (dy-
namic) IP address during the PPP network-layer protocol con-
figuration [16], [17]. This allows us to know with certainty the
nameserver addresses for the client, thus overcoming the major
challenge of matching clients to their nameservers using only
DNS and HTTP request timestamps in logs.

We obtained dial-up accounts from 9 National retail ISPs [18]
and two “free” ISPs. For each ISP, we dialed into approxi-

ISP accounts 11
POPs dialed 27–54, avg: 45:8

unique client addresses 498

unique nameserver addresses 54

nameserver addresses per ISP 2–15, avg: 7:4

TABLE V

ISP ADDRESS STATISTICS

mately 50 POPs across the U.S. Our dataset includes 1090 dis-
tinct client-nameserver pairs. Table V summarizes the ISP data.
Note that we limited our study to those ISPs that use standard
link-layer and authentication protocols to simplify the process
of automating the experiments.

From two probe points in the Internet (located in New York
and Michigan) we collected path and latency measurements
to the dial-up client and each of its nameservers using the
traceroute and ping tools. In addition we determined the
path and network latency from the client to its nameservers.

E. Proximity Evaluation Using ISP Measurements

In our evaluation of ISP client-nameserver proximity we fo-
cus on path and latency measurements from the probing points
rather than other proximity heuristics such as AS number or do-
main name. In most cases the AS numbers and domain names of
clients and nameservers matched, though some dial-up ISPs em-
ploy nameservers from third-party providers. It is interesting to
note that some larger network providers that provide DNS ser-
vices for dial-up ISPs appear to use network-layer anycast for
their DNS server addresses. We found several cases, for exam-
ple, where the path to the advertised DNS server address ended
at a different address when traced from different probe sites.

We first measured the size of client-nameserver clusters as
viewed from the two probing points, using the same technique
shown in Figure 4(a). The graph in Figure 5(a) shows simi-



1 3 5 7 9 11 13 15 17 19
Cluster size in hops

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n
 f

re
q

u
en

cy
 (

C
D

F
)

probe site 1 (NY)
probe site 2 (MI)

0 1 2 3 4 5 6
Path length ratio (common/disjoint)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti

ve
 d

is
tr

ib
u

ti
o

n
 f

re
q

u
en

cy
 (

C
D

F
)

probe site 1 (NY)
probe site 2 (MI)

(a) Client-nameservers clusters (b) Ratio of common to disjoint path length

Fig. 5. ISP client-nameserver paths: In (a) we show the distribution of cluster sizes as viewed from both probe sites. The graph in (b) shows the distribution of
the ratio between the common and disjoint portions of client-nameserver paths.

lar clustering to the log-based results in Section IV-C. Again,
nearly 30% of client-nameserver pairs fall in clusters that are 8
or more hops. The median cluster sizes are larger than in the
earlier results, 8 and 7 hops from probe sites 1 (New York) and
2 (Michigan), respectively. The results from both probe sites
are generally equivalent, though the clusters are slightly smaller
when viewed from probe site 2.

We compared these results with the direct client-nameserver
topological distance and found that the average distance over
all pairs was 7:6 hops, with a median of 8. Some clients were
as far as 15 hops from their nameservers. The average client-
to-nameserver round-trip latency was 234 ms, though this was
dominated by the average first-hop latency which was 188 ms.
These results show that even when considering direct distances,
clients and nameservers are often topologically quite far apart.

Another indicator of how performance from the client and its
nameserver may differ is the length of the common versus dis-
joint portions of the paths. Suppose the path from a Web server
to a client and its nameserver is common for many hops, and
then diverges near the ends. Then it might be expected that the
client and nameserver share similar network performance char-
acteristics to the server, more than if the paths diverged nearer to
the server. To measure this, we compute the ratio of the length
of the common portion of the paths to the disjoint portion. For
example, in Figure 4(a), the common path is A-B-C with length
2 and the (maximum) disjoint portion is C-F -G-H with length
3, resulting in a ratio of 2=3 = 0:66. A smaller ratio implies
that a smaller portion of the paths to the client and nameserver
is shared, suggesting that similar network performance to the
client and nameserver is less likely.

Figure 5(b) shows the distribution of path length ratios from
both probe sites. As expected, the path ratios depend heavily on
the probe site location. For probe site 1, around 35% of client-
nameserver paths have disjoint paths that are at least twice as
long as the common paths (i.e., ratio � 0:5). For probe site

2, however, only 5% of the client-nameserver pairs have a 0.5
ratio or less, and nearly 50% have ratio � 1:0. For both probe
sites, though, no more than 10% of the client-nameserver paths
had a ratio greater than 2.0. Thus, in most of the cases, the
disjoint portion of the path is significantly long, relative to the
common portion. One interpretation of these results is that the
nameserver and client paths are sufficiently divergent, such that
similar network performance is unlikely.

We also examined the network latency to clients and name-
servers to determine if measurements to nameservers are in gen-
eral indicative of the relative performance from the correspond-
ing clients. For example, several DNS-based server selection
products collect measurements from each server site to the re-
questing nameserver, and direct the client to the site reporting
the smallest round-trip latency. For each client-nameserver pair,
we obtain a round-trip latency measurement (using tracer-
oute) to the client and nameserver from each of the probe
sites3. We denote the measured latency from probe site 1 to
the client and nameserver as t1

c
and t

1

d
, respectively (similarly

for probe site 2). If we suppose that the probe sites represent
Web server sites, an interesting question is: does t1

d
< t

2

d
imply

that t1
c
< t

2

c
? In our experiments, this relationship was violated

in 21% of the cases. We also consider the case when two probe
sites look roughly equivalent with respect to nameserver latency,
i.e. jt1

d
� t

2

d
j � w, where w is, say, 10 ms. In this case we wish

to determine if the corresponding client latency is also roughly
the same, subject to the same value ofw. We found that this was
true in only about 12% of the cases, suggesting that a random
choice among two equivalent-looking server sites, when mea-
surements are relative to the nameserver, may be misguided. In
general, the correlation between nameserver latency and actual
client latency was quite low. Specifically, we computed the cor-
relation coefficient � between a = t

1

d
� t

2

d
and b = t

1

c
� t

2

c
, and

3The client latency is measured to the last hop router, rather than the client
itself, to remove the effect of the large delay introduced by the dial-up link.



150

Header

Question

Answer

Additional

Authority
RDATA = IP address

RDLENGTH = 4

TTL = 0

CLASS = IN

150

NAME = query name

TYPE = CA (client address)

(a) DNS message format (b) CA resource record

Fig. 6. DNS protocol modifications: The general DNS message format is
shown in (a), and (b) shows the proposed CA resource record carried in the
additional records section.

found that � = 0:32. Thus, a and b are positively correlated, but
only weakly so.

V. DNS PROTOCOL MODIFICATIONS

As stated at the outset, DNS-based server selection schemes
assume that clients and their primary nameservers are located
near each other, such that they would experience similar per-
formance when accessing a server. As shown in Section IV,
however, clients and nameservers are often topologically quite
distant from each other, casting doubt on the validity of this as-
sumption.

One way to address this problem is to modify the DNS pro-
tocol to carry additional information to identify the actual client
making the request. In this section we propose a simple scheme
that carries the IP address of the client requesting name resolu-
tion in the DNS query message. A DNS server performing load
balancing or server selection can use the client IP address to de-
cide more accurately which address to return in the answer. This
is, of course, only applicable in the common case where client
resolvers make recursive queries to the local nameserver, which
then operates iteratively to find the answer.

As shown in Figure 6(a), the standard DNS message format
consists of five sections: header, question, answer, au-
thority, and additional [4]. This scheme could be im-
plemented by modifying the format of the question section in
DNS messages, but a more backward compatible approach is to
define a new DNS resource record with type CA (client address)
to accompany the query in the additional records section of
the message. Figure 6(b) illustrates the format of the new re-
source record. The type field is set to CA and the data section
of the record simply contains the client IP address. The TTL is
zero since the record applies only to the current transaction and
should not be cached.

This scheme will also work when clients are behind firewalls
or proxies that hide actual client IP addresses. In many cases the
firewall or proxy makes the DNS query on behalf of the clients.
Thus, the address carried to the DNS load-balancing nameserver
is precisely what is needed, since the HTTP requests also origi-
nate from the firewall address.

Note that this extension can be incrementally deployed, sim-
ilar to other experimental resource records. Nameservers that
do not understand the new type will simply ignore it. This is a

slightly unusual use of a new resource record since it pertains to
a specific query instead of providing additional information in
the database about a host, nameserver, or network.

VI. RELATED WORK

There are several areas of research and standardization efforts
relating to DNS-based server selection. In this section we sum-
marize some representative work.

The general problem of determining distance between Inter-
net hosts or networks has received a great deal of recent atten-
tion. For example, the IDMaps architecture attempts to provide
a service in which traceroute measurements are distributed
over the Internet using IP multicast [19]. The SONAR service
provides an interface between applications and proximity esti-
mation services [20].

Related to proximity measurement is the question of which
metrics provide the best indication of actual latency. Recent
work has considered network hops, AS hops, and RTT metrics,
along with various means of collecting them, including active
probing or passive participation in BGP peering sessions [21],
[22], [23].

Several modifications to DNS have been proposed, both to
provide additional location information about hosts, and specif-
ically to facilitate server selection. The LOC resource record
allows geographic location information to be expressed in the
DNS as latitude and longitude [24]. Similarly, the GL resource
record encodes location information in terms of hierarchical lo-
cator (country code, postal code) and a textual address [25]. The
SRV DNS resource record is a proposed standard which speci-
fies the identity of servers that provide a specific service (e.g.,
LDAP) using a specified protocol (e.g., TCP), in a specified do-
main (e.g., service.com) [26]. Earlier work suggests using
the existing DNS zone transfer mechanism as a way to add flex-
ible load-balancing capability to a nameserver [27].

Finally, some recent work has proposed new mechanisms
to reduce client latency related to name resolution using pre-
fetching or proactive cache management techniques [28], [7].
This work further affirms that DNS caching plays a crucial role
in determining client-perceived latency.

VII. CONCLUSION

This paper explored two important issues related to DNS-
based server selection. DNS-based schemes typically disable
client-side caching of name resolution results, raising the ques-
tion of what impact this policy has on client-perceived Web ac-
cess latency. Our experiments show that without caching, name
resolution overhead can grow up to two orders of magnitude.
Furthermore, as the number of embedded objects served from
multiple sources increases, name lookup overheads can grow
nearly 50%. DNS-based server selection also relies on clients
and their local nameservers being in close proximity, since redi-
rection is based on the nameserver originating the request rather
than the client. Our experiments show that this assumption is
often violated, with clients typically 8 or more hops from their
nameservers. Also, our ISP experiments showed that latency
measurements to local nameservers are generally weak predic-
tors of latency to the actual clients.



Our results suggest that careful consideration is necessary
when choosing DNS TTL values to balance responsiveness
against extra client latency. Also, additional mechanisms may
be necessary to ensure the accuracy of server selection decisions
when client proximity is a deciding factor. In this paper, we pro-
pose one such mechanism in the form of a new, simple DNS
resource record that identifies the client originating a name res-
olution request.

ACKNOWLEDGMENT

We are grateful to David Bolthouse and Steven Woodruff of
IBM Global Services for their assistance in obtaining the HTTP
and DNS data. We also thank Nat Mills for providing us ac-
cess to the Page Detailer tool, and Srinivasan Seshan and Erich
Nahum for their suggestions and feedback.

REFERENCES

[1] P. Mockapetris, “Domain names – concepts and facilities,” Internet Re-
quest for Comments (RFC 1034), November 1987.

[2] Paul Albitz and Cricket Liu, DNS and BIND, O’Reilly and Associates,
1998.

[3] David Barr, “Common DNS operational and configuration errors,” Internet
Request for Comments (RFC 1912), February 1996.

[4] P. Mockapetris, “Domain names – implementation and specification,” In-
ternet Request for Comments (RFC 1035), November 1987.

[5] Internet Software Consortium, “Berkeley Internet name domain (BIND),”
http://www.isc.org/products/BIND, June 2000.

[6] Anant Kumar, Jon Postel, Cliff Neuman, Peter Danzig, and Steve Miller,
“Common DNS implementation errors and suggested fixes,” Internet Re-
quest for Comments (RFC 1536), October 1993.

[7] Edith Cohen and Haim Kaplan, “Proactive caching of DNS records: Ad-
dressing a performance bottleneck,” in Proc. of 2001 Symposium on Ap-
plications and the Internet (SAINT-2001), San Diego, CA, January 2001,
http://www.research.att.com/˜edith.

[8] Standard Performance Evaluation Corporation, “SPECweb 99 bench-
mark, performace results,” http://www.spec.org/osg/web99,
June 2000.

[9] Peter B. Danzig, Katia Obraczka, and Anant Kumar, “An analysis of wide-
area name server traffic: A study of the Internet Domain Name System,”
in Proceedings of ACM SIGCOMM, Baltimore, MD, August 1992, pp.
281–292.

[10] “Media Metrix top 50,” http://www.mediametrix.com/usa/
data/thetop.jsp, May 2000.

[11] Mikhail Mikhailov and Craig E. Wills, “Embedded objects in web pages,”
Tech. Rep. WPI-CS-TR-00-05, Worcester Polytechnic Institute, Worces-
ter, MA, March 2000.

[12] IBM Corporation, “Page Detailer,” Distributed with IBM WebSphere Stu-
dio, http://www.ibm.com/software/webservers, June 2000.

[13] “RADB Internet routing registry,” http://www.radb.net.
[14] “Internet routing registry daemon,” http://www.irrd.net.
[15] Balachander Krishnamurthy and Jia Wang, “On network-aware clus-

tering of web clients,” in Proceedings of ACM SIGCOMM, September
2000, Also available as AT&T Labs–Research Technical Memorandum
#000101-01-TM.

[16] Glenn McGregor, “The PPP Internet protocol control protocol (IPCP),”
Internet Request for Comments (RFC 1332), May 1992.

[17] Steve Cobb, “PPP Internet protocol control protocol extensions for name
server addresses,” Internet Request for Comments (RFC 1877), December
1995.

[18] “Top ISPs, quarterly report,” Network World Fusion, April 2000, http:
//www.nwfusion.com/research/2000/0417isp.html.

[19] Paul Francis, Sugih Jamin, Vern Paxson, Lixia Zhang, Daniel F.
Gryniewicz, and Yixin Jin, “An architecture for a global Internet host
distance estimation service,” in Proceedings of IEEE INFOCOM, March
1999.

[20] Keith Moore, “SONAR – a network proximity service,” Internet Draft
(draft-moore-sonar-03.txt), August 1998.

[21] Patrick McManus, “A passive system for server selection within mir-
rored resource environments using AS path length heuristics,” Tech.
Rep., AppliedTheory Corp., March 1999, http://proximate.
appliedtheory.com.

[22] Katia Obraczka and Fabio Silva, “Looking at network latency for server
proximity,” Tech. Rep. USC-CS-99-714, Department of Computer Sci-
ence, University of Southern California, 1999.

[23] Mehmet Sayal, Yuri Breitbart, Peter Scheuermann, and Radek Vingralek,
“Selection algorithms for replicated web servers,” in Proceeding of Work-
shop on Internet Server Performance (WISP98), Madison, WI, June 1998.

[24] Christopher Davis, Paul Vixie, Tim Goodwin, and Ian Dickinson, “A
means for expressing location information in the domain name system,”
Internet Request for Comments (RFC 1876), January 1996.

[25] “Definition of the DNS GL resource record used to encode geographic
locations,” Internet Draft (draft-costanzo-dns-gl-03.txt), June 2000.

[26] “A DNS RR for specifying the location of services (DNS SRV),” Internet
Request for Comments (RFC 2782), February 2000.

[27] Thomas P. Brisco, “DNS support for load balancing,” Internet Request for
Comments (RFC 1794), April 1995.

[28] Edith Cohen and Haim Kaplan, “Prefetching the means for document
transfer: A new approach for reducing web latency,” in Proceedings of
IEEE INFOCOM, Tel Aviv, Israel, March 2000.


