
ASSIGNMENT 3

1. If a multithreaded process forks, a problem occurs if the child gets copies

of all the parent’s threads. Suppose that one of the original threads was
waiting for a keyboard input. Now two threads are waiting for the
keyboard input, one in each process. Does this problem ever occur in
single-threaded processes? [1]

2. Is the register set a part of the per-thread or per-process state? Why? [1]
3. Let us consider the following system: An average process runs for a time T

before it blocks on I/O. A context switch takes time S, which is essentially
wasted. For round robin scheduling with quantum Q, give a formula for
CPU efficiency, which is (time when CPU is doing something useful/total
time) for each of the following cases: [2.5]

a. Q = ∞
b. Q > T
c. S < Q < T
d. Q = S
e. Q → 0

4. If P() and V() are not executed atomically, then do we still get a correct
solution to the critical section problem? Are any conditions, i.e. mutual
exclusion, progress and bounded waiting, violated? If yes, how? If not,
then show that it holds. [2]

5. Given a set of processes and their job completion times, prove that the
Shortest Job First algorithm gives the shortest waiting time. [1.5]

6. In the following program:
shared int N = 50, tally; /* shared across multiple processes */
void total() {
 int count;
 for(count=1; count < N; count++) {
 tally++;
 }
}
void main() {
 pid_t pid = fork();
 tally = 0;
 if (pid == 0) { /* shares the variable tally and N */
 total();
 } else if (pid > 0) {
 total(); /* shares tally and N with child process */
 }
}

Determine the proper upper and lower bound on the final value of the
shared variable tally. Assume that processes can run at any speed, and a
value can only be incremented after it has been loaded into a register by a
separate machine instruction. (Hint: lower bound is not 50) [2]

