
1

Protection: ACLs, Capabilities,
and More

2

We’ve seen:

• Some cryptographic techniques
– Encryption, hashing, types of keys, . . .

• Some kinds of attacks
– Viruses, worms, DoS, . . .

• And a distributed authorization and
authentication system
– Kerberos

• Now lets look at access controls and other
forms of protection

3

Access control

• Common Assumption
– System knows who the user is

• User has entered a name and password, or other info

– Access requests pass through gatekeeper
• Global property; OS must be designed so that this is true

? Resource
User

process

Decide whether user can apply operation to resource

Reference
monitor

4

Principle of Least Privilege

• Guiding principle in security
• Programs, users and systems should be

given enough privileges to perform their
tasks, and no more

• Impossible to get “just right”
• Commercial systems tend to err on the

side of too much privilege
– UNIX, the Internet, . . .
– Though this is finally changing

5

What makes it hard?

• Real (least privilege) policies are
complex…a lot of work to set them
– Here’s a new file…Mary and George can see

it, George may need to modify it, but Alex and
Bill have no reason to see it, . . .

• Least privilege changes over time
– A user setting his password needs to modify

the password file at a brief moment in time

6

Separation of Policy and
Mechanism

• This is another guiding principle
• Related to design and implementation of a

security system:
– Mechanisms should be simple and generic
– And support a wide range of policies

2

7

An example: Unix file security
• Each file has a single owner and group
• Each user can belong to multiple groups
• Permissions set by owner

– Read, write, execute
– Owner, group, other
– Represented by vector of

four octal values
• Only owner, root can change permissions

– This privilege cannot be delegated or shared
• Setid bits – Discuss in a few slides

rwx rwxrwx-

ownr grp othr

setid

Unix slides stolen from John Mitchell, Stanford
8

Effective user id (EUID)
• Each process has three Ids (+ more under Linux)

– Real user ID (RUID)
• same as the user ID of parent (unless changed)
• used to determine which user started the process

– Effective user ID (EUID)
• from set user ID bit on the file being executed, or sys call
• determines the permissions for process

– file access and port binding

– Saved user ID (SUID)
• So previous EUID can be restored

• Real group ID, effective group ID, used similarly

9

Process Operations and IDs

• Root
– ID=0 for superuser root; can access any file

• Fork and Exec
– Inherit three IDs, except exec of file with setuid bit

• Setuid system calls
– seteuid(newid) can set EUID to

• Real ID or saved ID, regardless of current EUID
• Any ID, if EUID=0

• Details are actually more complicated
– Several different calls: setuid, seteuid, setreuid

10

Setid bits on executable Unix file

• Three setid bits
– Setuid – set EUID of process to ID of file

owner
– Setgid – set EGID of process to GID of file
– Sticky

• Off: if user has write permission on directory, can
rename or remove files, even if not owner

• On: only file owner, directory owner, and root can
rename or remove file in the directory

11

Example

…;
…;
exec();

RUID 25 SetUID

program

…;
…;
i=getruid()
setuid(i);
…;
…;

RUID 25
EUID 18

RUID 25
EUID 25

-rw-r--r--

file

-rw-r--r--

file

Owner 18

Owner 25

read/write

read/write

Owner 18

12

Setuid programming

• Be Careful!
– Root can do anything; don’t get tricked
– Principle of least privilege – change EUID

when root privileges no longer needed
• Setuid scripts

– This is a bad idea
– Historically, race conditions

• Begin executing setuid program; change contents
of program before it loads and is executed

3

13

Unix: separation of mechanism and policy?

• Probably not enough
• Mechanism of root forces “root-style” policy
• Mechanism of owner forces “owner-style” policy

– A form of Discretionary Access Control (DAC)
• User controls access at his/her discretion

– Not Mandatory Access Control (MAC)
• Administrator controls access

• Though certainly some flexibility (many groups,
chown, etc.)

14

Unix summary

• Good things
– Some protection from most users
– Flexible enough to make things possible

• Main bad thing
– Too tempting to use root privileges
– No way to assume some root privileges without all

root privileges

15

Access Matrix

• Better separation of mechanism and policy
– Lampson

• View protection as a matrix (access matrix)
• Rows represent domains
• Columns represent objects

• Access(i, j) is the set of operations that a
process executing in Domaini can invoke on
Objectj

16

Access Matrix

Figure A

17

Use of Access Matrix

• Can be expanded to dynamic protection.
• Operations to add, delete access rights.
• Special access rights:

– owner of Oi

– copy op from Oi to Oj

– control – Di can modify Dj access rights
– transfer – switch from domain Di to Dj

18

Use of Access Matrix (Cont.)

• Access matrix design separates
mechanism from policy.
– Mechanism

• Operating system provides access-matrix + rules.
• If ensures that the matrix is only manipulated by

authorized agents and that rules are strictly
enforced.

– Policy
• User dictates policy.
• Who can access what object and in what mode.

4

19

Concept generalizes to switching
domains (setuid-like)

Figure B
20

Copy
Rights

21

Owner
Rights

22

Control Rights

23

Simplify with roles,
groups, and hierarchy

• Big matrix is hard to configure
• Roles/groups:

– Domain is a role or group, rather than a user
– Assign users to roles
– Administrator, PowerUser, User, Guest

• Roles can be hierarchical
– Higher role has all rights of lower roles

• Hierarchy in directory structure
– If user has read access to directory, user has read

access to every file in directory

24

Two implementation concepts

• Access control list (ACL)
– Store column of matrix

with the resource
• Capability

– Allow user to hold a
“ticket” for each resource

– Roughly: store row of
matrix with the user

writewritereadUser m

…

read--User 3

-writewriteUser 2

-writereadUser 1

…File 2File 1

Access control lists are widely used, often with groups

Some aspects of capability concept are used in Kerberos, …

5

25

Access Control Lists
• Example: to control file access

– Each file has an ACL associated with it

26

ACLs Discussion
• Need good data structures
• User will need to have multiple identities
• Need defaults for new objects
• Good security metaphors to users are needed!

27

Capabilities
• Store information by rows

– For each subject, there is list of objects that it can access
– Called a capability list of c-list; individual items are capabilities

• C-lists are objects too, and may be pointed to from other c-lists

28

Capabilities
• To access an object, subject presents the capability

– ‘capability’ word coined by Dennis and Van Horn in 1966
– Capability is (x, r) list. x is object and r is set of rights
– Capabilities are transferable

• How to name an object?
– Is start address sufficient?

• Array and first element of array have same address
– Is start address + length of object sufficient?

• What if start address changes?
– Random bit string: use hash table to translate from name to bits

• Need to protect capabilities from being forged by others
– ACLs were inherently unforgeable

29

Protecting Capabilities
• Prevent users from tampering with capabilities
• Tagged Architecture

– Each memory word has extra bit indicating that it is a capability
– These bits can only be modified in kernel mode
– Cannot be used for arithmetic, etc.

• Sparse name space implementation
– Kernel stores capability as object+rights+random number
– Give copy of capability to the user; user can transfer rights
– Relies on inability of user to guess the random number

• Need a good random number generator

30

Capability Revocation
• Kernel based implementation

– Kernel keeps track of all capabilities; invalidates on revocation

• Object keeps track of revocation list
– Difficult to implement

• Timeout the capabilities
– How long should the expiration timer be?

• Revocation by indirection
– Grant access to object by creating alias; give capability to alias
– Difficult to review all capabilities

• Revocation with conditional capabilities
– Object has state called “big bag”
– Access only if capability’s little bag has sth. in object’s big bag

6

31

Comparing ACLs & Capabilities
• Number of comparisons on opening a file?

– Capability: just one ACLs: linear with number of subjects

• Implementing when no groups are supported:
– Capabilities: easier ACLs: Need to enumerate all the subjects

• Finding out who has access to an object?
– Capabilities: difficult

• Is it possible to control propagation of rights?
– Capabilities: some counter can be used

• Selective revocation of rights:
– Easy for ACLs (no immediate effect); difficult for capabilities

• Easier propagation of rights for capabilities
32

Access Control in Windows (NTFS)

• Some basic ideas similar to Unix, but:
– Can associate many users and groups with objects
– Richer set of operations:

• Read, write, execute, delete, change owner, change
permission

• These come packaged as: Read, Write, Read and Execute,
Modify, Full Control

• Some additional concepts
– Tokens
– Security attributes
– These can be changed to “impersonate” another user

(analogous to setuid)

NTFS slides stolen from John Mitchell, Stanford

33

Sample permission options
• SID

– Identity (replaces UID)
• SID revision number
• 48-bit authority value
• variable number of

Relative Identifiers
(RIDs), for uniqueness

– Users, groups,
computers, domains,
domain members all
have SIDs

34

Security Descriptor
• Information associated with an object

– who can perform what actions on the object

• Several fields
– Header

• Descriptor revision number
• Control flags, attributes of the descriptor

– E.g., memory layout of the descriptor

– SID of the object's owner
– SID of the primary group of the object
– Two attached optional lists:

• Discretionary Access Control List (DACL) – users, groups, …
• System Access Control List (SACL) – system logs, ..

35

Example access request
User: Mark
Group1: Administrators
Group2: Writers

Control flags

Group SID
DACL Pointer
SACL Pointer

Deny
Writers
Read, Write
Allow
Mark
Read, Write

Owner SID

Revision Number

Access
token

Security
descriptor

Access request: write
Action: denied

• User Mark requests write permission
• Descriptor denies permission to group
• Reference Monitor denies request

36

Trusted Systems
• The computer world right now is full of security problems
• Can we build a secure computer system?

– Yes! (Well, more-or-less)

• Then why has it not been built yet?
– Users unwilling to throw out existing systems
– Features and performance (almost) always trumps security, so:

• more complexity, code, bugs and security errors

• Examples: e-mail (from ASCII to Word), web (applets)
• Trusted Systems: formally stated security requirements,

and how they are met

7

37

Trusted Computing Base
• Heart of every trusted system has a small TCB

– Hardware and software necessary for enforcing all security rules
– Typically has:

• most hardware,
• Portion of OS kernel, and
• most or all programs with superuser power

• Desirable features include:
– Should be small
– Should be separable and well defined
– Easy to audit independently

38

Reference Monitor
• Critical component of the TCB

– All sensitive operations go through the reference monitor
– Monitor decides if the operation should proceed
– Some of this starting to appear in consumer machines

• TPM chips, Security Enhanced Linux (SELinux)

39

Covert Channels
• Do these ideas make our system completely secure?

– No. Security leaks possible even in a system proved secure
mathematically. Lampson 1973

• Model: 3 processes. The client, server and collaborator
– Server and collaborator collude
– Goal: design a system where it is impossible for server to leak to

the collaborator info received from the client (Confinement)

• Solution: Access Matrix prevents server to write to a file
that collaborator has read access; no IPC either

• Covert Channel: compute hard for 1, sleep for a 0

40

Steganography
• Original picture 1024x768
• Using lower order RGB bits: 1024x768x3 = 294,912 bytes
• Five Shakespeare plays total 734,891 bytes:

– Hamlet, King Lear, Julius Caesar, The Merchant of Venice,
Macbeth

– Compress to: 274 KB, and then encode

41

9kB file in
80kB image

http://www.elec.reading.ac.uk/people/J.Grimbleby/Stego.htm
42

http://www.elec.reading.ac.uk/people/J.Grimbleby/Stego.htm

14kB image in
80kB image

8

43

Orange Book
• Dept. of Defense Standards DoD 5200.28 in 1985

– Known as Orange Book for the color of its cover

• Divides OSes into categories based on security property
– D – Minimal security.
– C – Provides discretionary protection through auditing. Divided

into C1 and C2. C1 identifies cooperating users with the same
level of protection (Unix). C2 allows user-level access control
(Windows NT 4.0).

– B – All the properties of C, however each object may have
unique sensitivity labels. Divided into B1, B2, and B3.

– A – Uses formal design and verification techniques to ensure
security.

