
1

Authentication and Kerberos

2

User auth on a single machine

3

Single host password
authentication

• More-or-less secure because:
– Path is physically secure (from keyboard to

computer a few feet away)
• And password is in the clear only briefly

– Attackers can’t derive password from the one-
way hash in the file

4

Single host password
authentication

• But. . . .
– The attacker can read the password file, and

do a password-guessing attack
• Guess password, hash it, matches hash in file if

guess is correct
– Attacker could spoof the login dialog

(phishing)
– A virus could monitor your keyboard strokes

• Ultimately, password-based systems suck

5

What about authentication over the
network?

• Used to be, passwords sent in the clear!
• HTTPS (SSL) gives us a secure

connection over which we can do a login
dialog
– As long as we trust the cert

• Other methods:
– Challenge/Response
– One-time passwords

6

Challenge/Response

2

7

Challenge/Response

• No replay attack
– If random number suitably random

• Dictionary attack is possible
– If exchange is eve-dropped
– Run over SSL (or any Diffie-Hellman)

8

One-time Password

• Client and Server have identical lists of
onetime passwords
– Plus a user password

• Can be generated with time-synchronized
pseudo-random number generators

• Or a list calculated in advance
• Attacker must obtain both list and

password

9

What is Kerberos?

• A network authentication system:
• Allows users on client hosts to authenticate

themselves to server hosts
– I.e., allows a server to know that the user is who he

says he is
• Assumes that users and hosts are untrusted

– Clients and servers are physically accessible, and
may have been compromised by attackers

10

What is Kerberos?
• Designed at MIT in the 80’s

– As part of a larger campus computing system called Athena
• Assumes that students will try to exploit the system

– And that students are capable!
• By protecting the system from inside attackers, it also

protects from outside attackers
• This (largely correct) notion that security must be

pervasive drove the anti-firewall sentiment within IETF
– In fact, firewalls and internal authentication systems are

complementary technologies

11

What is Kerberos?

• Kerberos had a huge impact on subsequent
security systems
– For instance, Windows NT used a variant

• Kerberos is still widely used
– Cornell’s “sidecar” system uses Kerberos

• Designed as a toolkit with an API
– Applications can use it however they please
– Applications must be modified to use it, but then this

is inevitable…

12

Kerberos model
• Kerberos was originally based on symmetric

keys, now includes public keys
– Public keys were patent protected, and there may

have been other reasons?
• The Kerberos service runs on physically

protected machines
– But all Kerberos client systems (I.e. client and server

hosts) are accessible
• The Kerberos service knows (a one-way hash

of) all passwords
– Users and servers know their own passwords only

3

13

Kerberos model
• Passwords never cross the network in the clear

(of course!)
• Users type in password at login time, but not

subsequently
– (I.e., they don’t have to type in the password again

when they access authenticated services)
• Why?

– Convenient for the user, but . . .
– More importantly: minimizes the number of times the

password ever exists in the clear

14

Minimizing clear passwords
• Password is in the clear:

– As the user types it
• Someone looking over your shoulder may see it

– As the computer reads it and puts it in a buffer
• An untrusted super-user could read this memory

• Kerberos minimizes the number of times that the
password itself is used

• Kerberos never puts a user password on a host disk
(even temporarily), and keeps it in memory for as short
a time as possible
– And over-writes the memory afterwards

15

Kerberos password
authentication

• But the path from a client to the Kerberos
server is not physically secure
– So, ultimately the Kerberos server must keep

a copy of (a hash of) the password!
• This is why the Kerberos servers must be

physically secure…

16

Kerberos Ticket

• When a client wants to talk to a server,
Kerberos gives both client and server a
“ticket”

• The ticket does two things:
– Authenticates the client to the server (and

optionally vice versa)
– Provides a session key that the client and

server can subsequently use (if they want)

17

Very rough idea of Kerberos
ticket (naïve version)

18

Problem with naïve version

• Client required storage of the user key to
decrypt the (outer) ticket

• But, don’t want to keep the user key on the
client host

• And, don’t want to have to ask the user for
the password every time the user wants to
access a new service

4

19

In fact, Kerberos has two types
of servers…

20

Authentication and Ticket
Granting Servers

• At login, user’s client goes to the
Authentication Server to get a session key
that allows it to talk to the TGS
– This is the only time the user’s password is

needed
• Subsequently, the TGS session key is

used to get tickets to talk to servers

21

Getting a Ticket Granting Ticket

22

Using a Ticket Granting Ticket

23

That was authentication… what
about authorization?

• Kerberos puts authorization function at the
server itself
– Idea is that it is easier to administer this

information at the server
• TGS will give the client a ticket to talk to a

server whether or not the client is
authorized

• Server will reject ticket if client doesn’t
have proper authorization

24

What about replay attack?

5

25

What about replay attack?

• This won’t work if subsequent client/server
session is encrypted
– Because eavesdropper never sees Kcs

• But often client/server session is not
encrypted, only authenticated

26

Client “authenticator”

27

Client “authenticator”
• Client also sends an authenticator containing the

client IP address and a timestamp
• The server only accepts the authenticator if from

the right IP address and at the right time
– Within a clock sync window of error, about five

minutes
• To replay, attacker must replay from the same IP

address within 5 minutes

28

Replay

• This is considered to be rather weak
replay protection

• An attacker may be on the same machine
as the user
– Or may simply assign itself that IP address

• Kerberos Version 5 has an optional
challenge/response

29

Challenge/Response

30

Challenge/Response

• Requires extra messages
– And extra expensive crypto operations

• Requires temporary state stored at server
– Though not a big deal

6

31

Password guessing attack

32

Password guessing attack

33

Password guessing attack

• Ultimately Kerberos relies on good user
passwords
– The usual thing:

• no common words, no personal info (friends
names, birthday, etc.), and no clever permutations
of these

• Use of authenticated queries and Diffie-
Hellman would make password guessing
attack harder

34

Other Kerberos weaknesses

• Kerberos servers are a bottleneck
• Kerberos weak to denial of service attack

– Take out the servers, and the whole network
comes to a screeching halt!

• Use of public keys with Kerberos
addresses these issues
– Note: Kerberos originally didn’t use public

keys because of patent issues

35

Kerberos with public keys
• Replace Kerberos servers (authentication and

ticket granting) with a Certificate Authority (CA)
1. Client gets CA signed pub key of server
2. Client sends server its cert (containing client pub

key) and a random session key, signed by client
priv key and encrypted by server pub key

3. Server authenticates client, sends client a “ticket”
(which can be used by Kerberos applications for
backwards compatibility)

