Authentication and Kerberos

User auth on a single machine

Doesrerd . | Y PP
[2o RS &Y

/?\ ==zsl ash | N
AT T~ o e LB hesk
N =22 Passwir S

N | <
Weer sets — \
PPN | I
‘rﬂh - - I'__.JL\-\
[Destay |
{ | S ;;;..—-'&I
| L—--:‘r ?n»
I | 2
| |]
~) L ;I —
\/ — Wser | i/

Co)—-\fl L g

2 y | = -hach | ¥
‘T Fn'_’-ﬁvl,-\”mb| Password }/‘L\—?!USNL“& l

P nii‘n_lJ

—_— 2

Single host password
authentication

* More-or-less secure because:
— Path is physically secure (from keyboard to
computer a few feet away)
* And password is in the clear only briefly

— Attackers can’t derive password from the one-
way hash in the file

Single host password
authentication

e But. ...

— The attacker can read the password file, and
do a password-guessing attack

« Guess password, hash it, matches hash in file if
guess is correct

— Attacker could spoof the login dialog
(phishing)

— A virus could monitor your keyboard strokes
» Ultimately, password-based systems suck

4

What about authentication over the
network?

» Used to be, passwords sent in the clear!

« HTTPS (SSL) gives us a secure
connection over which we can do a login
dialog
— As long as we trust the cert

» Other methods:

— Challenge/Response
— One-time passwords

Pw

Hash
-

/

Challenge/Response

,
—Me\e

Challenge/Response

* No replay attack
— If random number suitably random
+ Dictionary attack is possible
— If exchange is eve-dropped
— Run over SSL (or any Diffie-Hellman)

One-time Password

Client and Server have identical lists of
onetime passwords

— Plus a user password

Can be generated with time-synchronized
pseudo-random number generators

Or a list calculated in advance

Attacker must obtain both list and
password

What is Kerberos?

* A network authentication system:
» Allows users on client hosts to authenticate
themselves to server hosts
— l.e., allows a server to know that the user is who he
says he is
» Assumes that users and hosts are untrusted

— Clients and servers are physically accessible, and
may have been compromised by attackers

What is Kerberos?

Designed at MIT in the 80’s

— As part of a larger campus computing system called Athena
Assumes that students will try to exploit the system

— And that students are capable!

By protecting the system from inside attackers, it also
protects from outside attackers

This (largely correct) notion that security must be
pervasive drove the anti-firewall sentiment within IETF

— In fact, firewalls and internal authentication systems are
complementary technologies

What is Kerberos?

» Kerberos had a huge impact on subsequent
security systems
— For instance, Windows NT used a variant

» Kerberos is still widely used

— Cornell’'s “sidecar” system uses Kerberos
» Designed as a toolkit with an API
— Applications can use it however they please

— Applications must be modified to use it, but then this
is inevitable...

Kerberos model

Kerberos was originally based on symmetric

keys, now includes public keys

— Public keys were patent protected, and there may
have been other reasons?

The Kerberos service runs on physically

protected machines

— But all Kerberos client systems (l.e. client and server
hosts) are accessible

The Kerberos service knows (a one-way hash

of) all passwords

— Users and servers know their own passwords only

Kerberos model

» Passwords never cross the network in the clear
(of course!)

» Users type in password at login time, but not
subsequently

— (l.e., they don’t have to type in the password again
when they access authenticated services)

+ Why?
— Convenient for the user, but . . .

— More importantly: minimizes the number of times the
password ever exists in the clear

Minimizing clear passwords

+ Password is in the clear:
— As the user types it
« Someone looking over your shoulder may see it
— As the computer reads it and puts it in a buffer
« An untrusted super-user could read this memory
» Kerberos minimizes the number of times that the
password itself is used
» Kerberos never puts a user password on a host disk
(even temporarily), and keeps it in memory for as short
a time as possible
— And over-writes the memory afterwards

Kerberos password
authentication

But the path from a client to the Kerberos

server is not physically secure

— So, ultimately the Kerberos server must keep
a copy of (a hash of) the password!

This is why the Kerberos servers must be

physically secure...

Kerberos Ticket

* When a client wants to talk to a server,
Kerberos gives both client and server a
“ticket”

» The ticket does two things:

— Authenticates the client to the server (and
optionally vice versa)

— Provides a session key that the client and
server can subsequently use (if they want)

Very rough idea of Kerberos
ticket (naive version)

ﬁu;tr ‘ Sevver

Encfﬂ:h.& wa H
Server ker

T
| e

Eh(\"‘l(!'l}ld wf*%i??? K Kes >

WUser r-:a.ss wo

Problem with naive version

+ Client required storage of the user key to
decrypt the (outer) ticket

» But, don’t want to keep the user key on the
client host

* And, don’t want to have to ask the user for
the password every time the user wants to
access a new service

In fact, Kerberos has two types
of servers...

| Resved | | g | =
] TSRS [LT | T |
| Wser | | Patswards | 1 E)é""'tf [
l ?.ss unr»\sj \\ . L’(_J
~—— — 7

I

—|C

llent

AwFheaticativg / ©

Secver

I—= |

| Ddesver | | Werberos lieke™ |

Lo e | 1 - i e _ver |

| e iswesd= g | bhrawting Jec ¥=d I

~ / -~ 19
SN———

Authentication and Ticket
Granting Servers

+ Atlogin, user’s client goes to the
Authentication Server to get a session key
that allows it to talk to the TGS
— This is the only time the user’s password is

needed

» Subsequently, the TGS session key is
used to get tickets to talk to servers

20

Getting a Ticket Granting Ticket

Audhandieation [——-—L
Seevice (et R yeer T"Lk:'-f
{ P Clent Rt 5 4

\ | foeatin

bt pesfuard
\ ?iuw\ wier
> (/ i
Decey gt Heket
< e
ToKer (—-D:f‘ﬂ‘nr puiswe od

[
E\w_r?’ Ia}ui wi th, M

User posswor

ol

21

Using a Ticket Granting Ticket

i Client iﬁuslr Sev \rzrt

Er\c Yy F*EJ v H—.,

T\L\LL+
Leantin 1
Secvict

X Server, ke
I A R A

L
S Kee |G Kash

Euch P}!d with KCr < Kes >

That was authentication... what

about authorization?

» Kerberos puts authorization function at the
server itself
—|dea is that it is easier to administer this

information at the server

» TGS will give the client a ticket to talk to a
server whether or not the client is
authorized

» Server will reject ticket if client doesn’t
have proper authorization

23

What about replay attack?

ﬁustf ZSE{ v:r%

Esus;fﬂrr‘”‘
sees
T / Fretect
%- CJK"S
Later re o' s —
Wer pivaing [Eavesdropter)

te Lbe Usnr['.J \
a

What about replay attack?

» This won'’t work if subsequent client/server
session is encrypted
— Because eavesdropper never sees Kcs

+ But often client/server session is not
encrypted, only authenticated

25

Client “authenticator”

Client “authenticator”

+ Client also sends an authenticator containing the
client IP address and a timestamp

» The server only accepts the authenticator if from
the right IP address and at the right time

— Within a clock sync window of error, about five
minutes

» To replay, attacker must replay from the same IP
address within 5 minutes

27

Mot | (Cvent [Ruser [Secverl
| Tiae | o — L2 A" | \

[frmn® 22 | Trequet] T -

[Seevicdd |) kes | A Aupeeas teator heg |

T e Arenls |

M VEATE [r o.ldd‘ I[

I\ and a Imectamp rf

- ;

| g |

| T ., T awnl |

| 13 Kes Vo Pesl) [g

| 1 S |ic,ade T5| \C KL\ |

/" S]

/ v’ |

E e th with Keo Nes |
|

Replay

« This is considered to be rather weak
replay protection

* An attacker may be on the same machine
as the user
— Or may simply assign itself that IP address

» Kerberos Version 5 has an optional
challenge/response

28

Challenge/Response

ﬁu“f[K
e

Sa.r-:u- ._“l.\-lh-..ics

clvgnt with an
gv.u-\”ai'u& i Ce

(cng-‘hirnc. iu—lt

random number

IS Aiead cam h<rﬁ+

the nownce, elvent
e authearicated.

Euc_sdrorrlr weal be
able to deceypt the

nenC

Challenge/Response

* Requires extra messages
— And extra expensive crypto operations

* Requires temporary state stored at server
— Though not a big deal

30

Password guessing attack

1 ok et A

i cen et —— I T sed

(P I~ i s TeqRE
i\’ e rhticds
1 o

Yo —\

[—
——

This TespensE Cenvain s | —

?rl_d iehalie Salde {Tad CJ Ky

non-\l) clTunt vame ywser

=
A
.3
I.f*
Fol

et)

31

Password guessing attack

—
lhh’r\-‘v\"~t* -v\] ﬂ—;\ AJ-'\-OLI"‘(‘ I
Sarvice 11_'-/’ /‘[\ B
.i 3 Lt 1/1
L—y

Prrly prssue
- 7:5&95“:: ..T'?--‘:'k.

P l‘l‘k L%quo_ -(..'nls

32

Password guessing attack

+ Ultimately Kerberos relies on good user
passwords
— The usual thing:

* no common words, no personal info (friends
names, birthday, etc.), and no clever permutations
of these

» Use of authenticated queries and Diffie-
Hellman would make password guessing
attack harder

33

Other Kerberos weaknesses

« Kerberos servers are a bottleneck

« Kerberos weak to denial of service attack
— Take out the servers, and the whole network
comes to a screeching halt!
» Use of public keys with Kerberos
addresses these issues

— Note: Kerberos originally didn’t use public
keys because of patent issues

34

Kerberos with public keys

* Replace Kerberos servers (authentication and
ticket granting) with a Certificate Authority (CA)
1. Client gets CA signed pub key of server

2. Client sends server its cert (containing client pub
key) and a random session key, signed by client
priv key and encrypted by server pub key

3. Server authenticates client, sends client a “ticket”
(which can be used by Kerberos applications for
backwards compatibility)

35

