
1

Other File Systems:
NFS, FFS, WAFL, LFS

2

Distributed File Systems
• Goal: view a distributed system as a file system

– Storage is distributed
– Web tries to make world a collection of hyperlinked documents

• Issues not common to usual file systems
– Naming transparency
– Load balancing
– Scalability
– Location and network transparency
– Fault tolerance

• We will look at some of these today

3

File Sharing Semantics

4

Caching
• Keep repeatedly accessed blocks in cache

– Improves performance of further accesses

• How it works:
– If needed block not in cache, it is fetched and cached
– Accesses performed on local copy
– One master file copy on server, other copies distributed in DFS
– Cache consistency problem: how to keep cached copy

consistent with master file copy

• Where to cache?
– Disk: Pros: more reliable, data present locally on recovery
– Memory: Pros: diskless workstations, quicker data access,
– Servers maintain cache in memory

5

File Sharing Semantics
• Other approaches:

– Write through caches:
• immediately propagate changes in cache files to server
• Reliable but poor performance

– Delayed write:
• Writes are not propagated immediately, probably on file close
• Session semantics: write file back on close
• Alternative: scan cache periodically and flush modified blocks
• Better performance but poor reliability

– File Locking:
• The upload/download model locks a downloaded file
• Other processes wait for file lock to be released

6

Network File System (NFS)
• Developed by Sun Microsystems in 1984

– Used to join FSes on multiple computers as one logical whole

• Used commonly today with UNIX systems
• Assumptions

– Allows arbitrary collection of users to share a file system
– Clients and servers might be on different LANs
– Machines can be clients and servers at the same time

• Architecture:
– A server exports one or more of its directories to remote clients
– Clients access exported directories by mounting them

• The contents are then accessed as if they were local

2

7

Example

8

NFS Protocol
• Supports directory and file access via RPCs
• All UNIX system calls supported other than open & close
• Open and close are intentionally not supported

– For a read, client sends lookup message to server
– Server looks up file and returns handle
– Unlike open, lookup does not copy info in internal system tables
– Subsequently, read contains file handle, offset and num bytes
– Each message is self-contained

• Pros: server is stateless, i.e. no state about open files
• Cons: Locking is difficult, no concurrency control

9

NFS Layer Structure

10

Summary of Issues for File Systems

• Creating/representing/destroying independent files.
• disk block allocation, file block map structures
• directories and symbolic naming

• Masking the high seek/rotational latency of disk access.
• smart block allocation on disk
• block caching, read-ahead (prefetching), and write-behind

• Reliability and the handling of updates.

Note: This and remaining slides stolen from Jeff Chase,
Duke University

11

The Problem of Disk Layout
• The level of indirection in the file block maps allows

flexibility in file layout.
• “File system design is 99% block allocation.” [McVoy]

• Competing goals for block allocation:
– allocation cost
– bandwidth for high-volume transfers
– disk utilization
– efficient directory operations

• Goal: reduce disk arm movement and seek overhead.
• metric of merit: bandwidth utilization (or effective bandwidth)

12

FFS Cylinder Groups
• FFS defines cylinder groups as the unit of disk locality,

and it factors locality into allocation choices.
– typical: thousands of cylinders, dozens of groups
– Strategy: place “related” data blocks in the same cylinder group

whenever possible.
• seek latency is proportional to seek distance

– Smear large files across groups:
• Place a run of contiguous blocks in each group.

– Reserve inode blocks in each cylinder group.
• This allows inodes to be allocated close to their directory entries

and close to their data blocks (for small files).

3

13

FFS Allocation Policies
• Allocate file inodes close to their containing directories.

– For mkdir, select a cylinder group with a more-than-average
number of free inodes.

– For creat, place inode in the same group as the parent.
• Concentrate related file data blocks in cylinder groups.

• Most files are read and written sequentially.
– Place initial blocks of a file in the same group as its inode.

• How should we handle directory blocks?
– Place adjacent logical blocks in the same cylinder group.

• Logical block n+1 goes in the same group as block n.
• Switch to a different group for each indirect block.

14

The Problem of Metadata Updates
• Metadata updates are a second source of FFS seek

overhead.
– Metadata writes are poorly localized.

• E.g., extending a file requires writes to the inode, direct and
indirect blocks, cylinder group bit maps and summaries, and
the file block itself.

• Metadata writes can be delayed, but this incurs a
higher risk of file system corruption in a crash.
– If you lose your metadata, you are dead in the water.
– FFS schedules metadata block writes carefully to limit the

kinds of inconsistencies that can occur.
• Some metadata updates must be synchronous on controllers

that don’t respect order of writes.

15

FFS Failure Recovery
• FFS uses a two-pronged approach to handling failures:
• Carefully order metadata updates to ensure that no

dangling references can exist on disk after a failure.
– Never recycle a resource (block or inode) before zeroing all

pointers to it (truncate, unlink, rmdir).
– Never point to a structure before it has been initialized.

• E.g., sync inode on creat before filling directory entry, and sync a
new block before writing the block map.

• Run a file system scavenger (fsck) to fix other
problems.

• Free blocks and inodes that are not referenced.
• Fsck will never encounter a dangling reference or double

allocation.

16

Allocating a Block in FFS
• 1. Try to allocate the rotationally optimal physical block

after the previous logical block in the file.
• Skip rotdelay physical blocks between each logical block.
• (rotdelay is 0 on track-caching disk controllers.)

• 2. If not available, find another block a nearby rotational
position in the same cylinder group

• We’ll need a short seek, but we won’t wait for the rotation.
• If not available, pick any other block in the cylinder group.

• 3. If the cylinder group is full, or we’re crossing to a new
indirect block, go find a new cylinder group.

• Pick a block at the beginning of a run of free blocks.

17

Clustering in FFS
• Clustering improves bandwidth utilization for large files

read and written sequentially.
• Allocate clumps/clusters/runs of blocks contiguously; read/write the

entire clump in one operation with at most one seek.
– Typical cluster sizes: 32KB to 128KB.

• FFS can allocate contiguous runs of blocks “most of the
time” on disks with sufficient free space.
– This (usually) occurs as a side effect of setting rotdelay = 0.

• Newer versions may relocate to clusters of contiguous storage if the
initial allocation did not succeed in placing them well.

– Must modify buffer cache to group buffers together and
read/write in contiguous clusters.

18

Effect of Clustering
Access time = seek time + rotational delay + transfer time

average seek time = 2 ms for an intra-cylinder group seek, let’s say
rotational delay = 8 milliseconds for full rotation at 7200 RPM: average
delay = 4 ms
transfer time = 1 millisecond for an 8KB block at 8 MB/s

8 KB blocks deliver about 15% of disk bandwidth.
64KB blocks/clusters deliver about 50% of disk bandwidth.

128KB blocks/clusters deliver about 70% of disk bandwidth.

Actual performance will likely be better with good disk
layout, since most seek/rotate delays to read the next
block/cluster will be “better than average”.

4

19

WAFL: Write Anywhere File Layout

• Used in the Network Appliance NFS
Server

• Optimizes file system for random reads

20

WAFL: High-Level View

Allocation maps

Fixed location
The whole on-disk
file system layout is
a tree of blocks.

Everything else: write anywhere.

User data

21

WAFL: A Closer Look

22

Snapshots

“WAFL’s primary distinguishing characteristic is Snapshots,
which are readonly copies of the entire file system.”

This was really the origin of the idea of a point-in-time copy
for the file server market. What is this idea good for?

23

Snapshots

The snapshot mechanism is used for user-accessible snapshots
and for transient consistency points.

How is this like a fork?
24

WAFL Consistency Points
• “WAFL uses Snapshots internally so that it can restart

quickly even after an unclean system shutdown.”
• “A consistency point is a completely self-consistent

image of the entire file system. When WAFL restarts, it
simply reverts to the most recent consistency point.”
– Buffer dirty data in memory (delayed writes) and write new

consistency points as an atomic batch (force).
– A consistency point transitions the FS from one self-consistent

state to another.
– Combine with NFS operation log in NVRAM

• What if NVRAM fails?

5

25

Shadowing

1. starting point
modify purple/grey blocks

2. write new blocks to disk
prepare new block map

3. overwrite block map
(atomic commit)

and free old blocks

Shadowing is the basic technique for doing an atomic force.

Frequent problems: nonsequential disk writes, damages
clustered allocation on disk. How does WAFL deal with this?

reminiscent of copy-on-write

26

The Nub of WAFL
• WAFL’s consistency points allow it to buffer writes and

push them out in a batch.
– Deferred, clustered allocation
– Batch writes
– Localize writes

• Indirection through the metadata “tree” allows it to write
data wherever convenient: the tree can point anywhere.
– Maximize the benefits from batching writes in consistency points.
– Also allow multiple copies of a given piece of metadata, for

snapshots.

27

Alternative: Logging and Journaling
• Logging can be used to localize synchronous metadata

writes, and reduce the work that must be done on
recovery.

• Universally used in database systems.
• Used for metadata writes in journaling file systems (e.g., Episode).

• Key idea: group each set of related updates into a single
log record that can be written to disk atomically (“all-or-
nothing”).
– Log records are written to the log file or log disk sequentially.

• No seeks, and preserves temporal ordering.
– Each log record is trailed by a marker (e.g., checksum) that says

“this log record is complete”.
– To recover, scan the log and reapply updates.

28

Metadata Logging
• Here’s one approach to building a fast filesystem:
• 1. Start with FFS with clustering.
• 2. Make all metadata writes asynchronous.
• But, that approach cannot survive a failure, so:
• 3. Add a supplementary log for modified metadata.
• 4. When metadata changes, write new versions

immediately to the log, in addition to the asynchronous
writes to “home”.

• 5. If the system crashes, recover by scanning the log.
• Much faster than scavenging (fsck) for large volumes.

• 6. If the system does not crash, then discard the log.

29

Log-Structured File System (LFS)

• In LFS, all block and metadata allocation is log-based.
– LFS views the disk as “one big log” (logically).
– All writes are clustered and sequential/contiguous.

• Intermingles metadata and blocks from different files.
– Data is laid out on disk in the order it is written.
– No-overwrite allocation policy: if an old block or inode

is modified, write it to a new location at the tail of the
log.

– LFS uses (mostly) the same metadata structures as
FFS; only the allocation scheme is different.

• Cylinder group structures and free block maps are
eliminated.

• Inodes are found by indirecting through a new map (the ifile).
30

Writing the Log in LFS
• LFS “saves up” dirty blocks and dirty inodes

until it has a full segment (e.g., 1 MB).
– Dirty inodes are grouped into block-sized clumps.
– Dirty blocks are sorted by (file, logical block

number).
– Each log segment includes summary info and a

checksum.
• LFS writes each log segment in a single burst,

with at most one seek.
– Find a free segment “slot” on the disk, and write it.
– Store a back pointer to the previous segment.

• Logically the log is sequential, but physically it consists of a
chain of segments, each large enough to amortize seek
overhead.

6

31

Cleaning in LFS

• What does LFS do when the disk fills up?
• As the log is written, blocks and inodes written earlier in

time are superseded (“killed”) by versions written later.
– files are overwritten or modified; inodes are updated
– when files are removed, blocks and inodes are deallocated

• A cleaner daemon compacts remaining live data to free
up large hunks of free space suitable for writing
segments.
– look for segments with little remaining live data
– write remaining live data to the log tail
– can consume a significant share of bandwidth, and there are lots

of cost/benefit heuristics involved.

