File System Implementation

File-System Structure

File structure

— Logical storage unit

— Collection of related information

File system resides on secondary storage
(disks)

File system organized into layers

File control block — storage structure consisting
of information about a file

A Typical File Control Block

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

In-Memory File System Structures

directory structine
open (lile namaj e

diractory structure

file-control block.

user space Kamel memary secondary siorage
o
index
| | | / data blocks
read (index) { e |

d block

per-p ys >
cpen-file table apan-fil tabile

user space kemal mamary secondary slorage
(b

File System Layout

+ File System is stored on disks

— Disk is divided into 1 or more partitions

— Sector 0 of disk called Master Boot Record

— End of MBR has partition table (start & end address of partitions)
First block of each partition has boot block

— Loaded by MBR and executed on boot

Entire disk

I Pﬂl'.ﬁm\]]lﬂahk f.jl.'/ Disk Tnml?\\l‘ I

| oot tiock [ super tiock | Free space mgmt | trodes | Roctdi | Files and deactories |

Allocation Methods

An allocation method refers to how disk blocks
are allocated for files:

Contiguous allocation
Linked allocation

Indexed allocation




Contiguous Allocation Contiguous Allocation of Disk Space
~ directary
Each file occupies a set of contiguous blocks on \*»—-t_——r—/ fle  start length
. count
the disk oD 100 200 30 cout 0 2
Simple — only starting location (block #) and length f tr 43
(number of blocks) are required 401 e IS o
8] a(T1o[11d :'5‘ 22 ;
Random access 12E|13D14E|‘1rslj
. . 160017 eJ1s
Wasteful of space (dynamic storage-allocation mail
problem) 2021 Jz2[T2a[]
2425 J2s[27]
Files cannot grow meD";JEIaiD
7 \"--— 8
Linked Allocation File-Allocation Table
directory directory entry
file  start end lost | "ese 217}
jeep 9 25 name start block T——
o
?r 217 618
339 ]
20[J21 zﬂ]zﬂj 618 339 |
24[JesEile[J27]
25!]29[:30[:]31 |:| no, of disk blocks -1
0 FAT "

. Combined Sch : UNIX (4K b block
Example of Indexed Allocation ombined seneme (4K bytes per block)

o directory mode
|——— fila  index block owners (2)
o 1|:L\2D 3] leep 1,9 timestamps (3)
siza block count
4[] s0J 700
direct blocks 77
.
single indirect —
2425612701 double indirect _|
triple indirect

28[JzeJs0[J31]

e " 1




Free-Space Management

« Bit vector (n blocks)

01 2 n-1

’ 0 = block]i] free
bit[/] =
1 = block[i] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

Free-Space Management
(Cont.)

Bit map requires extra space
— Example:

block size = 212 bytes
disk size = 230 bytes (1 gigabyte)
n = 280/212 = 218 pits (or 32K bytes)
Easy to get contiguous files
Linked list (free list)

— Cannot get contiguous space easily
— No waste of space

Grouping (many links per block)
Counting (aggregate continuous blocks)

Linked Free Space List on Disk

free-space list head —

20[J21[J22
24 J25[ 26

28 Jea[J30[J31[]
S —

23]

Directory Implementation

Each directory is a file

Linear list of file names with pointer to the data
blocks

— simple to program

— time-consuming to execute

Hash Table — linear list with hash data structure
— decreases directory search time

— collisions — situations where two file names hash to
the same location

— fixed size

Efficiency and Performance

+ Efficiency dependent on:
— disk allocation and directory algorithms
— types of data kept in file’s directory entry

» Performance

— disk cache — separate section of main memory for
frequently used blocks

— free-behind and read-ahead — techniques to optimize
sequential access

— improve PC performance by dedicating section of
memory as virtual disk, or RAM disk

Page Cache

A page cache caches pages rather than disk
blocks using virtual memory techniques

Memory-mapped I/O uses a page cache

Routine 1/0 through the file system uses the
buffer (disk) cache

Sync, Async, flush




I/0O Using a Unified Buffer Cache

1/0 using
read( ) and write( )

N

buffer cache

memory-mapped /O

file system

Recovery

» Consistency checking — compares data in
directory structure with data blocks on disk, and
tries to fix inconsistencies

* Use system programs to back up data from disk
to another storage device (floppy disk, magnetic
tape, other magnetic disk, optical)

» Recover lost file or disk by restoring data from
backup

20

Log Structured File Systems

+ Log structured (or journaling) file systems record each
update to the file system as a transaction

« All transactions are written to a log
— Atransaction is considered committed once it is written to the
log
— However, the file system may not yet be updated

« The transactions in the log are asynchronously written to the
file system
— When the file system is modified, the transaction is removed
from the log

« If the file system crashes, all remaining transactions in the

log must still be performed
21




