
1

Thrashing and
Memory Management

2

Thrashing
• Processes in system require more memory than is there

– Keep throwing out page that will be referenced soon
– So, they keep accessing memory that is not there

• Why does it occur?
– No good reuse, past != future
– There is reuse, but process does not fit
– Too many processes in the system

3

Approach 1: Working Set
• Peter Denning, 1968

– Defines the locality of a program

pages referenced by process in last T seconds of execution
considered to comprise its working set

T: the working set parameter

• Uses:
– Caching: size of cache is size of WS
– Scheduling: schedule process only if WS in memory
– Page replacement: replace non-WS pages

4

Working Sets

• The working set size is num pages in the working set
– the number of pages touched in the interval (t, t-∆).

• The working set size changes with program locality.
– during periods of poor locality, you reference more pages.
– Within that period of time, you will have a larger working set size.

• Don’t run process unless working set is in memory.

5

Working Sets in the Real World

W
orking set size

transition, stable

6

Working Set Approximation
• Approximate with interval timer + a reference bit
• Example: ∆ = 10,000

– Timer interrupts after every 5000 time units
– Keep in memory 2 bits for each page
– Whenever a timer interrupts copy and sets the values of all

reference bits to 0
– If one of the bits in memory = 1 ⇒ page in working set

• Why is this not completely accurate?
• Improvement = 10 bits and interrupt every 1000 time

units

2

7

Using the Working Set
• Used mainly for prepaging

– Pages in working set are a good approximation

• In Windows processes have a max and min WS size
– At least min pages of the process are in memory (50)
– If > max pages in memory, on page fault a page is replaced

(345)
– Else if memory is available, then WS is increased on page fault
– The max WS can be specified by the application
– The max is also modified then window is minimized!

• Let’s see the task manager

8

Approach 2: Page Fault Frequency
• thrashing viewed as poor ratio of fetch to work
• PFF = page faults / instructions executed
• if PFF rises above threshold, process needs more memory

– not enough memory on the system? Swap out.

• if PFF sinks below threshold, memory can be taken away

9

Dynamic Memory Management

• On loading a program, OS creates memory for
process
– Decides pages available for code, data, stack and

heap

• Next, lets look at the heap:
– Used for all dynamic memory allocations
– malloc/free in C, new/delete in C++, new/garbage

collection in Java
– Is a very large array allocated by OS, managed by

program
10

Allocation and deallocation
• What happens when you call:

– int *p = (int *)malloc(2500*sizeof(int));
• Allocator slices a chunk of the heap and gives it to the program

– free(p);
• Deallocator will put back the allocated space to a free list

• Simplest implementation:
– Allocation: increment pointer on every allocation
– Deallocation: no-op
– Problems: lots of fragmentation

heap (free memory)

current free positionallocation

11

Memory allocation goals
• Minimize space

– Should not waste space, minimize fragmentation

• Minimize time
– As fast as possible, minimize system calls

• Maximizing locality
– Minimize page faults cache misses

• And many more

• Proven: impossible to construct “always good” memory
allocator

12

Memory Allocator
• What allocator has to do:

– Maintain free list, and grant memory to requests
– Ideal: no fragmentation and no wasted time

• What allocator cannot do:
– Control order of memory requests and frees
– A bad placement cannot be revoked

• Main challenge: avoid fragmentation

20 20 2010 10
malloc(20)?

3

13

Impossibility Results
• Optimal memory allocation is NP-complete for general

computation
• Given any allocation algorithm, there exists streams of

allocation and deallocation requests that defeat the
allocator and cause extreme fragmentation

14

Best Fit Allocation
• Minimum size free block that can satisfy request
• Data structure:

– List of free blocks
– Each block has size, and pointer to next free block

• Algorithm:
– Scan list for the best fit

20 30 30 37

15

Best Fit gone wrong
• Simple bad case: allocate n, m (m<n) in alternating

orders, free all the m’s, then try to allocate an m+1.
• Example:

– If we have 100 bytes of free memory
– Request sequence: 19, 21, 19, 21, 19

– Free sequence: 19, 19, 19

– Wasted space: 57!

19 21 19 21 19

19 21 19 21 19

16

A simple scheme
• Each memory chunk has a signature before and after

– Signature is an int
– +ve implies the a free chunk
– -ve implies that the chunk is currently in use
– Magnitude of chunk is its size

• So, the smallest chunk is 3 elements:
– One each for signature, and one for holding the data

17

Which chunk to allocate?
• Maintain a list of free chunks

– Binning, doubly linked lists, etc

• Use best fit or any other strategy to determine page
– For example: binning with best-fit

• What if allocated chunk is much bigger than request?
– Internal fragmentation
– Solution: split chunks

• Will not split unless both chunks above a minimum size

• What if there is no big-enough free chunk?
– sbrk or mmap
– Possible page fault

18

What happens on free?
• Identify size of chunk returned by user
• Change sign on both signatures (make +ve)
• Combine free adjacent chunks into bigger chunk

– Worst case when there is one free chunk before and after
– Recalculate size of new free chunk
– Update the signatures

• Don’t really need to erase old signatures

4

19

Example
Initially one chunk, split and make signs negative on malloc

+8

+8

-2

-2
+4

+4

p = malloc(2 * sizeof (int));

20

Example
q gets 4 words, although it requested for 3

+8

+8

-2

-2
-4

-4

p = malloc(2 * sizeof (int));

q = malloc(3 * sizeof (int));

