
1

Memory Management

2

How to create a process?
• On Unix systems, executable read by loader

• Compiler: generates one object file per source file
• Linker: combines all object files into one executable
• Loader: loads executable in memory

ld loader Cache

Compile time runtime

3

What does process look like?

heap

stack

code

initialized data

address 2^n-1

address >= 0

Process divided into segments, each has:
- Code, data, heap (dynamic data) and stack (procedure calls)

4

Processes in Memory
• We want many of them to coexist

• Issues:
– PowerPoint needs more memory than there is on machine?
– What is visual studio tries to access 0x0005?
– If PowerPoint is not using enough memory?
– If OS needs to expand?

OS

PowerPoint

Visual Studio

0x0000

0x1100

0x1210

0x2300

5

Issues
• Protection: Errors in process should not affect others
• Transparency: Should run despite memory size/location

gcc

virtual
addressCPU

Load Store legal addr?
Physical
address Physical

memory

data

Translation box (MMU)

How to do this mapping? 6

Issues
• Protection: Errors in process should not affect others
• Transparency: Should run despite memory size/location

gcc

virtual
addressCPU

Load Store
Illegal?

Physical
memory

fault

Translation box (MMU)

How to do this mapping?

2

7

Scheme 1: Load-time Linking
• Link as usual, but keep list of references
• At load time: determine the new base address

– Accordingly adjust all references (addition)

• Issues: handling multiple segments, moving in memory

0x1000

static a.out
0x3000

0x4000

OS

jump 0x2000 jump 0x5000

0x6000

jump 0x2000

8

Scheme 2: Execution-time Linking

• Use hardware (base + limit reg) to solve the problem
– Done for every memory access
– Relocation: physical address = logical (virtual) address + base
– Protection: is virtual address < limit?

– When process runs, base register = 0x3000, bounds register =
0x2000. Jump addr = 0x2000 + 0x3000 = 0x5000

0x1000

a.out
0x3000

0x4000

OS

a.out

jump 0x2000
jump 0x2000

0x6000
Base: 0x3000
Limit: 0x2000

MMU

9

Dynamic Translation
• Memory Management Unit in hardware

– Every process has its own address space

CPU MMU

logical addrs
memory

Physical
addrs

10

Logical and Physical Addresses
Logical Address

View
Physical Address

View

0

0

0

0

MMU

OS

11

Scheme 2: Discussion
• Pro:

– cheap in terms of hardware: only two registers
– cheap in terms of cycles: do add and compare in parallel

• Con: only one segment
– prob 1: growing processes. How to expand gcc?
– prob 2: how to share code and data?? how can Word copies

share code?
– prob 3: how to separate code and data?

• A solution: multiple segments
– “segmentation”

gcc

p2

Free space
p3

gcc
Word2

Word1 12

Segmentation
• Processes have multiple base + limit registers
• Processes address space has multiple segments

– Each segment has its own base + limit registers
– Add protection bits to every segmentgcc

Text seg
r/o

Stack seg
r/w

0x1000

0x3000

0x5000

0x6000

Real memory
0x2000

0x8000

0x6000
Base&Limit?

How to do the mapping?

3

13

Mapping Segments
• Segment Table

– An entry for each segment
– Is a tuple <base, limit, protection>

• Each memory reference indicates segment and offset

Virtual addr

Seg# offset

3 128

Seg table
Prot base len

r 0x1000 512

mem

seg
128

+ 0x1000? yes
no

fault

14

Segmentation Example
• If first two bits are for segments, next 12 for offset

• where is 0x0240?
• 0x1108?
• 0x265c?
• 0x3002?
• 0x1700?

Seg base bounds rw
0 0x4000 0x6ff 10
1 0x0000 0x4ff 11
2 0x3000 0xfff 11
3 00

0x4000

0x3000

0x2000

0x1500

0x1000
0x0700

0x0000

logical physical

0x4700

0x4000

0x3000

0x500

0x0

15

Segmentation: Discussion
• Advantages:

– Allows multiple segments per process
– Easy to allow sharing of code
– Do not need to load entire process in memory

• Disadvantages:
– Extra translation overhead:

• Memory & speed
– An entire segment needs to reside contiguously in memory!

⇒ Fragmentation

16

Fragmentation
• “The inability to use free memory”
• External Fragmentation:

– Variable sized pieces ⇒ many small holes over time
• Internal Fragmentation:

– Fixed sized pieces ⇒ internal waste if entire piece is not used

gcc

emacs

doom
stackallocated

Unused
(“internal
fragmentation”)

External
fragmentationWord ??

17

Paging
• Divide memory into fixed size pieces

– Called “frames” or “pages”

• Pros: easy, no external fragmentation

gcc

emacs internal frag

Pages
typical: 4k-8k

18

Mapping Pages
• If 2m virtual address space, 2n page size

⇒ (m - n) bits to denote page number, n for offset within page

Translation done using a Page Table

Virtual addr

VPN page offset

3 128 (12bits)

page table
Prot VPN PPN

r 3 1

mem

seg
128

0x1000((1<<12)|128)

“invalid”

? PPN

4

19

Paging: Hardware Support
• Entire page table (PT) in registers

– PT can be huge ~ 1 million entries

• Store PT in main memory
– Have PTBR point to start of PT
– Con: 2 memory accesses to get to any physical address

• Use Translation Lookaside Buffers (TLB):
– High speed associative memory
– Basically a cache for PT entries

20

Paging: Discussion
• Advantages:

– No external fragmentation
– Easy to allocate
– Easy to swap, since page size usually same as disk block size

• Disadvantages:
– Space and speed

• One PT entry for every page, vs. one entry for contiguous memory
for segmentation

0xFFFF0x0000

Page tableB=0x0,len=0xffff

21

Size of the page
• Small page size:

– High overhead:
• What is size of PT if page size is 512 bytes, and 32-bit addr space?

• Large page size:
– High internal fragmentation

page size

Internal frag
&

writeback cost

Overhead

More

22

Two-Level Paging Example
• A logical address (on 32-bit machine with 4K page size) is divided into:

– a page number consisting of 20 bits
– a page offset consisting of 12 bits

• Since the page table is paged, the page number is further divided into:
– a 10-bit page number
– a 10-bit page offset

• Thus, a logical address is as follows:

where pi is an index into the outer page table, and p2 is the displacement
within the page of the outer page table

page number page offset

pi p2 d

10 10 12

23

Two-Level Page-Table Scheme

24

Address-Translation Scheme
• Address-translation scheme for a

two-level 32-bit paging architecture

5

Virtual Memory

26

What is virtual memory?
• Each process has illusion of large address space

– 232 for 32-bit addressing

• However, physical memory is much smaller
• How do we give this illusion to multiple processes?

– Virtual Memory: some addresses reside in disk

page table

Physical memory

disk

27

Virtual Memory

• Load entire process in memory (swapping), run it, exit
– Is slow (for big processes)
– Wasteful (might not require everything)

• Solutions: partial residency
– Paging: only bring in pages, not all pages of process
– Demand paging: bring only pages that are required

• Where to fetch page from?
– Have a contiguous space in disk: swap file (pagefile.sys)

28

How does VM work?
• Modify Page Tables with another bit (“is present”)

– If page in memory, is_present = 1, else is_present = 0
– If page is in memory, translation works as before
– If page is not in memory, translation causes a page fault

Disk

Mem

32 :P=1
4183:P=0
177 :P=1
5721:P=0

29

Page Faults
• On a page fault:

– OS finds a free frame, or evicts one from memory (which one?)
• Want knowledge of the future?

– Issues disk request to fetch data for page (what to fetch?)
• Just the requested page, or more?

– Block current process, context switch to new process (how?)
• Process might be executing an instruction

– When disk completes, set present bit to 1, and current process in
ready queue

30

Resuming after a page fault
• Should be able to restart the instruction
• For RISC processors this is simple:

– Instructions are idempotent until references are done

• More complicated for CISC:
– E.g. move 256 bytes from one location to another
– Possible Solutions:

• Ensure pages are in memory before the instruction executes

6

31

When to fetch?
• Just before the page is used!

– Need to know the future

• Demand paging:
– Fetch a page when it faults

• Prepaging:
– Get the page on fault + some of its neighbors, or
– Get all pages in use last time process was swapped

32

What to replace?
• Page Replacement

– When process has used up all frames it is allowed to use
– OS must select a page to eject from memory to allow new page
– The page to eject is selected using the Page Replacement Algo

• Goal: Select page that minimizes future page faults

33

Page Replacement Algorithms
• Random: Pick any page to eject at random

– Used mainly for comparison

• FIFO: The page brought in earliest is evicted
– Ignores usage
– Suffers from “Belady’s Anomaly”

• Fault rate could increase on increasing number of pages
• E.g. 0 1 2 3 0 1 4 0 1 2 3 4 with frame sizes 3 and 4

• OPT: Belady’s algorithm
– Select page not used for longest time

• LRU: Evict page that hasn’t been used the longest
– Past could be a good predictor of the future

34

Example: FIFO, OPT

Reference stream is A B C A B D A D B C

OPTIMAL
A B C A B D A D B C B

toss A or Dtoss C5 Faults

FIFO
A B C A B D A D B C B

toss A

A
B
C
D
A
B
C

toss ?7 Faults

35

Implementing Perfect LRU
• On reference: Time stamp each page
• On eviction: Scan for oldest frame
• Problems:

– Large page lists
– Timestamps are costly

• Approximate LRU
– LRU is already an approximation!

36

LRU: Clock Algorithm
• Each page has a reference bit

– Set on use, reset periodically by the OS

• Algorithm:
– FIFO + reference bit (keep pages in circular list)

• Scan: if ref bit is 1, set to 0, and proceed. If ref bit is 0, stop and
evict.

• Problem:
– Low accuracy for large memory R=1

R=0
R=1

R=1
R=1

R=0R=0
R=1

R=0
R=0

R=1

7

37

LRU with large memory
• Solution: Add another hand

– Leading edge clears ref bits
– Trailing edge evicts pages with ref bit 0

• What if angle small?
• What if angle big?

R=1
R=0

R=1
R=1

R=1
R=0R=0

R=1
R=0
R=0

R=1

38

Clock Algorithm: Discussion
• Sensitive to sweeping interval

– Fast: lose usage information
– Slow: all pages look used

• Clock: add reference bits
– Could use (ref bit, modified bit) as ordered pair
– Might have to scan all pages

• LFU: Remove page with lowest count
– No track of when the page was referenced
– Use multiple bits. Shift right by 1 at regular intervals.

• MFU: remove the most frequently used page
• LFU and MFU do not approximate OPT well

39

Page Buffering
• Cute simple trick: (XP, 2K, Mach, VMS)

– Keep a list of free pages
– Track which page the free page corresponds to
– Periodically write modified pages, and reset modified bit

40

Allocating Pages to Processes
• Global replacement

– Single memory pool for entire system
– On page fault, evict oldest page in the system
– Problem: protection

• Local (per-process) replacement
– Have a separate pool of pages for each process
– Page fault in one process can only replace pages from its own

process
– Problem: might have idle resources

