
1

IPC and Intro to Networking

2

Interprocess Communication (IPC)

• Mechanism for processes to communicate and to 
synchronize their actions

• Message system – processes communicate with each 
other without resorting to shared variables

• IPC facility provides two operations:
– send(message) – message size fixed or variable 
– receive(message)

• If P and Q wish to communicate, they need to:
– establish a communication link between them
– exchange messages via send/receive

• Implementation of communication link
– physical (e.g., shared memory, hardware bus)
– logical (e.g., logical properties)

3

Communications Models 

4

Direct Communication

• Processes must name each other explicitly:
– send (P, message) – send a message to process P
– receive(Q, message) – receive a message from 

process Q
• Properties of communication link

– Links are established automatically
– A link is associated with exactly one pair of 

communicating processes
– Between each pair there exists exactly one link
– The link may be unidirectional, but is usually bi-

directional

5

Indirect Communication
• Messages are directed and received from mailboxes 

(also referred to as ports)
– Each mailbox has a unique id
– Processes can communicate only if they share a mailbox

• Properties of communication link
– Link established only if processes share a common mailbox
– A link may be associated with many processes
– Each pair of processes may share several communication 

links
– Link may be unidirectional or bi-directional

6

Indirect Communication

• Operations
– create a new mailbox
– send and receive messages through mailbox
– destroy a mailbox

• Primitives are defined as:
send(A, message) – send a message to 
mailbox A
receive(A, message) – receive a message 
from mailbox A



2

7

Indirect Communication

• Mailbox sharing
– P1, P2, and P3 share mailbox A
– P1, sends; P2 and P3 receive
– Who gets the message?

• Solutions
– Allow a link to be associated with at most two 

processes
– Allow only one process at a time to execute a receive 

operation
– Allow the system to select arbitrarily the receiver.  

Sender is notified who the receiver was.
8

Synchronization
• Message passing may be either blocking or non-

blocking
• Blocking is considered synchronous

– Blocking send has the sender block until the message is 
received

– Blocking receive has the receiver block until a message is 
available

• Non-blocking is considered asynchronous
– Non-blocking send has the sender send the message and 

continue
– Non-blocking receive has the receiver receive a valid message 

or null

9

Buffering

• Queue of messages attached to the link; 
implemented in one of three ways
1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)
2. Bounded capacity – finite length of n

messages
Sender must wait if link full

3. Unbounded capacity – infinite length 
Sender never waits

10

Networking . . .

• Packets
• LAN service
• Routers
• Internet service
• IP and NAT
• TCP and UDP service
• Port numbers

11

Networking . . .

• How TCP works
• Naming and DNS

12

TCP Java Client Code

import java.io.*; 
import java.net.*; 
class TCPClient { 

public static void main(String argv[]) throws Exception 
{ 

Socket clientSocket = new Socket(“boo.cs.cornell.edu", 6789); 
DataOutputStream outToServer = 

new DataOutputStream(clientSocket.getOutputStream());
BufferedReader inFromServer = 

new BufferedReader(new
InputStreamReader(clientSocket.getInputStream())); 

outToServer.writeBytes(stuff_to_write); 
stuff_to_read = inFromServer.readLine(); 
clientSocket.close(); 

}
}



3

13

TCP Java Server Code 
(listening thread)

import java.io.*; 
import java.net.*; 
class TCPServer { 

public static void main(String argv[]) throws Exception 
{ 
ServerSocket listen_socket = new ServerSocket(6789); 
while(true) { 

Socket client_socket = listen_socket.accept(); 
Connection c = new Connection(client_socket);

}
}

}

14

TCP Java Server Code 
(spawned thread)

class Connection extends Thread {
while(true) { 

BufferedReader inFromClient = 
new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream()));

DataOutputStream outToClient = new  
DataOutputStream (connectionSocket.getOutputStream()); 

inputString = inFromClient.readLine(); 
…….
outToClient.writeBytes(outputString); 

} 
} 

15

Example: Java client (UDP)
import java.io.*; 
import java.net.*; 

class UDPClient { 
public static void main(String args[]) throws Exception 
{ 

BufferedReader inFromUser = 
new BufferedReader(new InputStreamReader(System.in)); 

DatagramSocket clientSocket = new DatagramSocket(); 

InetAddress IPAddress = InetAddress.getByName("hostname"); 

byte[] sendData = new byte[1024]; 
byte[] receiveData = new byte[1024]; 

String sentence = inFromUser.readLine(); 

sendData = sentence.getBytes();

Create
input stream

Create 
client socket

Translate
hostname to IP 

address using DNS

16

Example: Java client (UDP), cont.

DatagramPacket sendPacket = 
new DatagramPacket(sendData, sendData.length, IPAddress, 9876); 

clientSocket.send(sendPacket); 

DatagramPacket receivePacket = 
new DatagramPacket(receiveData, receiveData.length); 

clientSocket.receive(receivePacket); 

String modifiedSentence = 
new String(receivePacket.getData()); 

System.out.println("FROM SERVER:" + modifiedSentence); 
clientSocket.close(); 
} 

}

Create datagram with 
data-to-send,

length, IP addr, port

Send datagram
to server

Read datagram
from server

17

Example: Java server (UDP)
import java.io.*; 
import java.net.*; 

class UDPServer { 
public static void main(String args[]) throws Exception 

{ 

DatagramSocket serverSocket = new DatagramSocket(9876); 

byte[] receiveData = new byte[1024]; 
byte[] sendData = new byte[1024]; 

while(true) 
{ 

DatagramPacket receivePacket = 
new DatagramPacket(receiveData, receiveData.length); 

serverSocket.receive(receivePacket);

Create
datagram socket

at port 9876

Create space for
received datagram

Receive
datagram

18

Example: Java server (UDP), cont
String sentence = new String(receivePacket.getData()); 

InetAddress IPAddress = receivePacket.getAddress(); 

int port = receivePacket.getPort(); 

String capitalizedSentence = sentence.toUpperCase(); 

sendData = capitalizedSentence.getBytes(); 

DatagramPacket sendPacket = 
new DatagramPacket(sendData, sendData.length, IPAddress, 

port); 

serverSocket.send(sendPacket); 
} 

} 

}

Get IP addr
port #, of

sender

Write out 
datagram
to socket

End of while loop,
loop back and wait for
another datagram

Create datagram
to send to client


