
1

Deadlocks

2

System Model
• There are non-shared computer resources

– Maybe more than one instance
– Printers, Semaphores, Tape drives, CPU

• Processes need access to these resources
– Acquire resource

• If resource is available, access is granted
• If not available, the process is blocked

– Use resource
– Release resource

• Undesirable scenario:
– Process A acquires resource 1, and is waiting for resource 2
– Process B acquires resource 2, and is waiting for resource 1
⇒ Deadlock!

3

For example: Semaphores
semaphore: mutex1 = 1 /* protects resource 1 */

mutex2 = 1 /* protects resource 2 */

Process A code:
{

/* initial compute */
P(mutex1)
P(mutex2)

/* use both resources */

V(mutex2)
V(mutex1)

}

Process B code:
{

/* initial compute */
P(mutex2)
P(mutex1)

/* use both resources */

V(mutex2)
V(mutex1)

}
4

Deadlocks
Definition:

Deadlock exists among a set of processes if
– Every process is waiting for an event
– This event can be caused only by another process in the set

• Event is the acquire of release of another resource

One-lane bridge

5

Four Conditions for Deadlock
• Coffman et. al. 1971
• Necessary conditions for deadlock to exist:

– Mutual Exclusion
• At least one resource must be held is in non-sharable mode

– Hold and wait
• There exists a process holding a resource, and waiting for another

– No preemption
• Resources cannot be preempted

– Circular wait
• There exists a set of processes {P1, P2, … PN}, such that

– P1 is waiting for P2, P2 for P3, …. and PN for P1

All four conditions must hold for deadlock to occur

6

Resource Allocation Graph
• Deadlock can be described using a resource allocation graph, RAG
• The RAG consists of:

– set of vertices V = P ∪ R,
• where P={P1,P2,…,Pn} of processes and R={R1,R2,…,Rm} of resources.

– Request edge: directed edge from a process to a resource,
• Pi→Rj, implies that Pi has requested Rj.

– Assignment edge: directed edge from a resource to a process,
• Rj→Pi, implies that Rj has been allocated to Pi.

• If the graph has no cycles, deadlock cannot exist.
• If the graph has a cycle, deadlock may exist.

2

7

RAG Example

.

.

.

.

.
.
.
.

.

.

.

. . . .
R1 R3 R3

R4

R2

P3P2P1

R1

P1 P2 P3

P4

R2 R4
Cycles:

P1-R1-P2-R3-P3-R2-P1
P2-R3-P3-R2-P2

and there is deadlock.
Same cycles, but no deadlock

8

Dealing with Deadlocks
• Proactive Approaches:

– Deadlock Prevention
• Negate one of 4 necessary conditions
• Prevent deadlock from occurring

– Deadlock Avoidance
• Carefully allocate resources based on future knowledge
• Deadlocks are prevented

• Reactive Approach:
– Deadlock detection and recovery

• Let deadlock happen, then detect and recover from it

• Ignore the problem
– Pretend deadlocks will never occur
– Ostrich approach (real OSs!!!)

9

Deadlock Prevention
• Can the OS prevent deadlocks?
• Prevention: Negate one of necessary conditions

– Mutual exclusion:
• Make resources sharable
• Not always possible (spooling?)

– Hold and wait
• Do not hold resources when waiting for another
⇒ Request all resources before beginning execution

Processes do not know what all they will need
Starvation (if waiting on many popular resources)
Low utilization (Need resource only for a bit)

• Alternative: Release all resources before requesting anything new
– Still has the last two problems

10

Deadlock Prevention
• Prevention: Negate one of necessary conditions

– No preemption:
• Make resources preemptable (2 approaches)
• Preempt requesting processes’ resources if all not available
• Preempt resources of waiting processes to satisfy request
• Good when easy to save and restore state of resource

– CPU registers, memory virtualization

– Circular wait: (2 approaches)
• Single lock for entire system? (Problems)
• Impose partial ordering on resources, request them in order

11

Breaking Circular Wait
• Order resources (lock1, lock2, …)
• Acquire resources in strictly increasing/decreasing order
• When requests to multiple resources of same order:

– Make the request a single operation

• Intuition: Cycle requires an edge from low to high, and
from high to low numbered node, or to same node

Ordering not always possible, low resource utilization

1

2

3

4
1

1 2

12

• Acquire all resources, if block on any, release all, and retry

• Pro: dynamic, simple, flexible
• Con:

– Cost with number of resources?
– Length of critical section?
– Hard to know what’s needed a priori

Two phase locking

print_file:
lock(file);
acquire printer
acquire disk;
…do work…
release all

3

13

Deadlock Avoidance
• If we have future information

– Max resource requirement of each process before they execute

• Can we guarantee that deadlocks will never occur?

• Avoidance Approach:
– Before granting resource, check if state is safe
– If the state is safe ⇒ no deadlock!

14

Safe State
• A state is said to be safe, if it has a process sequence

{P1, P2,…, Pn}, such that for each Pi,
the resources that Pi can still request can be satisfied by
the currently available resources plus the resources held
by all Pj, where j < i

• State is safe because OS can definitely avoid deadlock
– by blocking any new requests until safe order is executed

• This avoids circular wait condition
– Process waits until safe state is guaranteed

15

Safe State Example
• Suppose there are 12 tape drives

max need current usage could ask for
p0 10 5 5
p1 4 2 2
p2 9 2 7

3 drives remain

• current state is safe because a safe sequence exists: <p1,p0,p2>
p1 can complete with current resources
p0 can complete with current+p1
p2 can complete with current +p1+p0

• if p2 requests 1 drive, then it must wait to avoid unsafe state.

16

Safe State Example
(One resource class only)
 process holding max claims

A 4 6
B 4 11
C 2 7

unallocated: 2

 safe sequence: A,C,B

If C should have a claim of 9 instead of 7,
there is no safe sequence.

17

Safe State Example
 process holding max claims

A 4 6
 B 4 11

C 2 9

unallocated: 2
deadlock-free sequence: A,C,B

if C makes only 6 requests

However, this sequence is not safe:
If C should have 7 instead of 6 requests, deadlock exists.

18

RAG Algorithm
• Works if only one instance of each resource type
• Algorithm:

– Add a claim edge, Pi→Rj if Pi can request Rj in the future
• Represented by a dashed line in graph

– A request Pi→Rj can be granted only if:
• Adding an assignment edge Rj → Pi does not introduce cycles

– Since cycles imply unsafe state

R1

P1 P2

R2

R1

P1 P2

R2

4

19

Banker’s Algorithm
• Decides whether to grant a resource request.
• Data structures:

n: integer # of processes
m: integer # of resources
available[1..m] available[i] is # of avail resources of type i
max[1..n,1..m] max demand of each Pi for each Ri
allocation[1..n,1..m] current allocation of resource Rj to Pi
need[1..n,1..m] max # resource Rj that Pi may still request

let request[i] be vector of # of resource Rj Process Pi wants

20

Basic Algorithm
1. If request[i] > need[i] then

error (asked for too much)
2. If request[i] > available[i] then

wait (can’t supply it now)
3. Resources are available to satisfy the request

Let’s assume that we satisfy the request. Then we would have:
available = available - request[i]
allocation[i] = allocation [i] + request[i]
need[i] = need [i] - request [i]

Now, check if this would leave us in a safe state:
if yes, grant the request,
if no, then leave the state as is and cause process to wait.

21

Safety Check
free[1..m] = available /* how many resources are available */
finish[1..n] = false (for all i) /* none finished yet */

Step 1: Find an i such that finish[i]=false and need[i] <= work
/* find a proc that can complete its request now */

if no such i exists, go to step 3 /* we’re done */

Step 2: Found an i:
finish [i] = true /* done with this process */
free = free + allocation [i]

/* assume this process were to finish, and its allocation
back to the available list */
go to step 1

Step 3: If finish[i] = true for all i, the system is safe. Else Not
22

Banker’s Algorithm: Example
Allocation Max Available
A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

this is a safe state: safe sequence <P1, P3, P4, P2, P0>

Suppose that P1 requests (1,0,2)
- add it to P1’s allocation and subtract it from Available

23

Banker’s Algorithm: Example
Allocation Max Available
A B C A B C A B C

P0 0 1 0 7 5 3 2 3 0
P1 3 0 2 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

This is still safe: safe seq <P1, P3, P4, P0, P2>

In this new state,
P4 requests (3,3,0)

not enough available resources

P0 requests (0,2,0)
let’s check resulting state 24

Banker’s Algorithm: Example
Allocation Max Available
A B C A B C A B C

P0 0 3 0 7 5 3 2 1 0
P1 3 0 2 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3

This is unsafe state (why?)
So P0’s request will be denied

Problems with Banker’s Algorithm?

5

25

Deadlock Detection & Recovery
• If none of these approaches are used, deadlock can

occur
• This scheme requires:

– Detection: finding out if deadlock has occurred
• Keep track of resource allocation (who has what)
• Keep track of pending requests (who is waiting for what)

– Ways to recover from it

• Expensive to detect, as well as recover

26

RAG Algorithm
• Suppose there is only one instance of each resource
• Example 1: Is this a deadlock?

– P1 has R2 and R3, and is requesting R1
– P2 has R4 and is requesting R3
– P3 has R1 and is requesting R4

• Example 2: Is this a deadlock?
– P1 has R2, and is requesting R1 and R3
– P2 has R4 and is requesting R3
– P3 has R1 and is requesting R4

• Use a wait-for graph:
– Collapse resources
– An edge Pi→Pk exists only if RAG has Pi→Rj & Rj → Pk

– Cycle in wait-for graph ⇒ deadlock!

27

2nd Detection Algorithm
• What if there are multiple resource instances?

• Data structures:

n: integer # of processes
m: integer # of resources
available[1..m] available[i] is # of avail resources of type i
request[1..n,1..m] max demand of each Pi for each Ri
allocation[1..n,1..m] current allocation of resource Rj to Pi
finish[1..n] true if Pi’s request can be satisfied

let request[i] be vector of # instances of each resource Pi wants

28

2nd Detection Algorithm
1. work[]=available[]

for all i < n, if allocation[i] ≠ 0
then finish[i]=false else finish[i]=true

2. find an index i such that:
finish[i]=false;
request[i]<=work

if no such i exists, go to 4.
3. work=work+allocation[i]

finish[i] = true, go to 2
4. if finish[i] = false for some i,

then system is deadlocked with Pi in deadlock

29

Example
Finished = {F, F, F, F};
Work = Available = (0, 0, 1);

111P4

011P3

212P2

111P1

R3R2R1

111P4

100P3

122P2

123P1

R3R2R1

Allocation Request

30

Example
Finished = {F, F, T, F};
Work = (1, 1, 1);

111P4

011P3

212P2

111P1

R3R2R1

111P4

P3

122P2

123P1

R3R2R1

Allocation Request

6

31

Example
Finished = {F, F, T, T};
Work = (2, 2, 2);

111P4

011P3

212P2

111P1

R3R2R1

P4

P3

122P2

123P1

R3R2R1

Allocation Request

32

Example
Finished = {F, T, T, T};
Work = (4, 3, 2);

111P4

011P3

212P2

111P1

R3R2R1

P4

P3

P2

123P1

R3R2R1

Allocation Request

33

When to run Detection Algorithm?

• For every resource request?
• For every request that cannot be immediately satisfied?
• Once every hour?
• When CPU utilization drops below 40%?

34

Deadlock Recovery
• Killing one/all deadlocked processes

– Crude, but effective
– Keep killing processes, until deadlock broken
– Repeat the entire computation

• Preempt resource/processes until deadlock broken
– Selecting a victim (# resources held, how long executed)
– Rollback (partial or total)
– Starvation (prevent a process from being executed)

35

What happens today?
• Ostrich Approach
• Deadlock avoidance and prevention is often impossible
• Thorough detection of all scenarios too expensive
• All operating systems have potential deadlocks
• Engineering philosophy:

The price of infrequent crashes in exchange for performance and
user convenience is worth it

36

SQL Server
• Runs detection algorithm:

– Periodically, or
– On demand

• Recovers by terminating:
– Least expensive process, or
– User specified priority

Transaction (Process ID xxx) was deadlocked on (xxx)
resources with another process and has been chosen as the
deadlock victim. Rerun the transaction.

7

37

Windows DDK Driver Verifier
• DDK = Device Driver Kit
• Added in XP and later
• Uses Deadlock Prevention, by breaking circular-wait

– Checks for a hierarchy in your locking mechanism

• Will bugcheck even if your system has not deadlocked!
– (0xc4), fatal error

• You would not use it in a production system
– Useful in development

