Deadlocks

System Model

* There are non-shared computer resources
— Maybe more than one instance
— Printers, Semaphores, Tape drives, CPU
Processes need access to these resources
— Acquire resource

« If resource is available, access is granted

« If not available, the process is blocked
— Use resource
— Release resource
» Undesirable scenario:

— Process A acquires resource 1, and is waiting for resource 2

— Process B acquires resource 2, and is waiting for resource 1
= Deadlock!

For example: Semaphores

semaphore: mutex1

=1 /* protects resource 1 */
mutex2 =

1 /* protects resource 2 */

Process A code: Process B code:

{ {
/* initial compute */ /* initial compute */
P(mutex1) P(mutex2)
P(mutex2) P(mutex1)

/* use both resources */ /* use both resources */

V(mutex2)
V(mutex1)

} }

V(mutex2)
V(mutex1)

Deadlocks

Definition:
Deadlock exists among a set of processes if
— Every process is waiting for an event

— This event can be caused only by another process in the set
« Event is the acquire of release of another resource

One-lane bridge

Four Conditions for Deadlock

Coffman et. al. 1971
Necessary conditions for deadlock to exist:
— Mutual Exclusion

« At least one resource must be held is in non-sharable mode
— Hold and wait

« There exists a process holding a resource, and waiting for another
— No preemption

« Resources cannot be preempted
— Circular wait

+ There exists a set of processes {P,, P,, ... Py}, such that
— P, is waiting for P,, P, for P, and Py for P,

All four conditions must hold for deadlock to occur

Resource Allocation Graph

Deadlock can be described using a resource allocation graph, RAG
The RAG consists of:

— setof vertices V=P UR,

« where P={P,,P,,...,P.} of processes and R={R;,R,,...,R;} of resources.
— Request edge: directed edge from a process to a resource,

* P—R,; implies that P; has requested R;.
— Assignment edge: directed edge from a resource to a process,

* Ri—P; implies that R; has been allocated to P;.

If the graph has no cycles, deadlock cannot exist.
If the graph has a cycle, deadlock may exist.

RAG Example

R1 R3 R1 R3

P1 P2 P3 P P2 P3

. \/ .

N .
R2 \O R4
Fa

R2 .

R4
Cycles:
P1-R1-P2-R3-P3-R2-P1
P2-R3-P3-R2-P2
and there is deadlock.

Same cycles, but no deadlock7

Deadlock Prevention

» Can the OS prevent deadlocks?

» Prevention: Negate one of necessary conditions
— Mutual exclusion:
* Make resources sharable
« Not always possible (spooling?)
— Hold and wait
« Do not hold resources when waiting for another
= Request all resources before beginning execution
Processes do not know what all they will need
Starvation (if waiting on many popular resources)
Low utilization (Need resource only for a bit)

« Alternative: Release all resources before requesting anything new
— Still has the last two problems

Dealing with Deadlocks

» Proactive Approaches:
— Deadlock Prevention
* Negate one of 4 necessary conditions
« Prevent deadlock from occurring
— Deadlock Avoidance

« Carefully allocate resources based on future knowledge
« Deadlocks are prevented

» Reactive Approach:
— Deadlock detection and recovery
« Let deadlock happen, then detect and recover from it
» Ignore the problem
— Pretend deadlocks will never occur
— Ostrich approach (real OSs!!!)

Deadlock Prevention

» Prevention: Negate one of necessary conditions

— No preemption:
« Make resources preemptable (2 approaches)
« Preempt requesting processes’ resources if all not available
« Preempt resources of waiting processes to satisfy request
« Good when easy to save and restore state of resource

— CPU registers, memory virtualization

— Circular wait: (2 approaches)
« Single lock for entire system? (Problems)
+ Impose partial ordering on resources, request them in order

Breaking Circular Wait

+ Order resources (lock1, lock2, ...)

Acquire resources in strictly increasing/decreasing order
When requests to multiple resources of same order:

— Make the request a single operation

Intuition: Cycle requires an edge from low to high, and
from high to low numbered node, or to same node

¥ Ordering not always possible, low resource utilization

Two phase locking

» Acquire all resources, if block on any, release all, and retry

print_file:
lock(file);
acquire printer
acquire disk;
..do work...

o . release all
* Pro: dynamic, simple, flexible

* Con:
— Cost with number of resources?
— Length of critical section?
— Hard to know what’s needed a priori

Deadlock Avoidance

+ If we have future information
— Max resource requirement of each process before they execute

» Can we guarantee that deadlocks will never occur?

» Avoidance Approach:
— Before granting resource, check if state is safe
— If the state is safe = no deadlock!

Safe State

» A state is said to be safe, if it has a process sequence
{P4, P,,..., P}, such that for each P,

the resources that P, can still request can be satisfied by
the currently available resources plus the resources held
by all P;, where j <i

» State is safe because OS can definitely avoid deadlock
— by blocking any new requests until safe order is executed

» This avoids circular wait condition
— Process waits until safe state is guaranteed

Safe State Example

« Suppose there are 12 tape drives
max heed current usage could ask for

pO 10 5 5
pl 4 2 2
p2 9 2 7

3 drives remain

< current state is safe because a safe sequence exists: <p1,p0,p2>
p1 can complete with current resources
pO can complete with current+p1
p2 can complete with current +p1+p0

« if p2 requests 1 drive, then it must wait to avoid unsafe state.

Safe State Example

(One resource class only)
process holding max claims

A 4 6
B 4 1
c 2 7

unallocated: 2

safe sequence: A,C,B

If C should have a claim of 9 instead of 7,
there is no safe sequence.

Safe State Example

process holding max claims
A 4 6

B 4 1
c 2 9

unallocated: 2
deadlock-free sequence: A,C,B

if C makes only 6 requests

However, this sequence is not safe:
If C should have 7 instead of 6 requests, deadlock exists.

RAG Algorithm

» Works if only one instance of each resource type
» Algorithm:
— Add a claim edge, P—R; if P, can request R, in the future
« Represented by a dashed line in graph
— Arequest P—R; can be granted only if:

+ Adding an assignment edge R; — P, does not introduce cycles
— Since cycles imply unsafe state

Banker’s Algorithm

» Decides whether to grant a resource request.
+ Data structures:

n: integer # of processes

m: integer # of resources

available[1..m] available[i] is # of avail resources of type i
max[1..n,1.m] max demand of each Pi for each Ri
allocation[l..n,1.m] current allocation of resource Rj to Pi
need[1..n,1.m] max # resource Rj that Pi may still request

let request[i] be vector of # of resource Rj Process Pi wants

Basic Algorithm

1. If request[i] > need[i] then
error (asked for too much)
2. If request[i]> available[i] then
wait (can't supply it now)
3. Resources are available to satisfy the request
Let's assume that we satisfy the request. Then we would have:
available = available - request[i]
allocation[i] = allocation [i] + request[i]
need[i] = need [i] - request [i]
Now, check if this would leave us in a safe state:
if yes, grant the request,
if no, then leave the state as is and cause process to wait.
20

Safety Check

free[l..m] = available /* how many resources are available */
finish[1..n] = false (for all i) /* none finished yet */

Step 1: Find an i such that finish[i]=false and need][i] <= work
/* find a proc that can complete its request now */
if no such i exists, go fo step 3 /* we're done */

Step 2: Found an i:
finish [i] = true /* done with this process */
free = free + allocation [i]

/* assume this process were fo finish, and its allocation
back to the available list */

go to step 1

Step 3: If finish[i] = true for all i, the system is safe. Else Not

21

) H .
Banker’s Algorithm: Example
Allocation Max Available
A B C A BC A BC
PO 01 7 53 332
PL 200 322
P2 3 02 9 02
P3 211 2 22
P4 00 2 4 3 3

this is a safe state: safe sequence <P1, P3, P4, P2, PO>

Suppose that P1 requests (1,0,2)
- add it to P1’s allocation and subtract it from Available

22

Banker’'s Algorithm: Example

Allocation Max Available
ABC ABC ABC
PO 010 753 230
PL 302 322
P2 302 902
P3 211 222
P4 00 2 4 33

This is still safe: safe seq <P1, P3, P4, PO, P2>

In this new state,
P4 requests (3,3,0)

not enough available resources

PO requests (0,2,0)
let's check resulting state =

Banker’s Algorithm: Example

Allocation | Max Available
ABC ABC ABC
PO 030 753 210
PL 302 322
P2 302 9 02
P3 211 222
PA 00 2 4 33

This is unsafe state (why?)
So PO0’s request will be denied

Problems with Banker’s Algorithm?
24

Deadlock Detection & Recovery

If none of these approaches are used, deadlock can
occur
This scheme requires:

— Detection: finding out if deadlock has occurred

+ Keep track of resource allocation (who has what)

« Keep track of pending requests (who is waiting for what)
— Ways to recover from it

Expensive to detect, as well as recover

25

RAG Algorithm

Suppose there is only one instance of each resource
Example 1: Is this a deadlock?

— P1has R2 and R3, and is requesting R1

— P2 has R4 and is requesting R3

— P3has R1 and is requesting R4

Example 2: Is this a deadlock?

— P1hasR2, and is requesting R1 and R3

— P2 has R4 and is requesting R3

— P3has R1 and is requesting R4
Use a wait-for graph:

— Collapse resources

— Anedge P—P, exists only if RAG has P—R; & R — Py
— Cycle in wait-for graph = deadlock!

26

2nd Detection Algorithm

What if there are multiple resource instances?

Data structures:

n: integer # of processes

m: integer # of resources

available[1..m] available[i] is # of avail resources of type i
request[l.n,1.m] max demand of each Pi for each Ri
allocation[1..n,1..m] current allocation of resource Rj to Pi
finish[1..n] true if Pi's request can be satisfied

let request[i] be vector of # instances of each resource Pi wants

27

2nd Detection Algorithm

work[]=available[]
for all i <n, if allocation[i]# 0
then finish[i]=false else finish[i]=true
find an index i such that:
finish[i]=false;
request[ilk=work
if no such i exists, go to 4.
work=work+allocation[i]
finish[i] = true, go to 2
if finish[i] = false for some i,
then system is deadlocked with Pi in deadlock

Example

Finished = {F, F, F, F};
Work = Available = (0, 0, 1);

R, | R, | R R | R | R
Ppo| 111 P, | 3 | 2 1
P, | 2 | 1| 2 P, | 2 | 2 1
Py | 1 | 1|0 P, | 0 | 0O 1
Po | 1| 11 P, | 1 1 1
Allocation Request

29

Allocation Request

28
Example
Finished = {F, F, T, F}
Work = (1,1, 1);
Ry R, R, R, R, R;
Py 1 1 1 P, 3 2 1
P, 2 1 2 P, 2 2 1
P, 1 1 0 P,
P, 1 1 1 P, 1 1 1

30

Example

Finished = {F,F, T, T}

Work = (2, 2, 2);
Ri | R | R R, | R, | R
Py 1 1 1 P, 3 2 1
P, 2 1 2 @ 2 2 1
P3 1 1 0 P,
P, 1 1 1 P,
Allocation Request

31

Example
Finished ={F, T, T, T}
Work = (4, 3, 2);
Ri | R | R R, | R, | R
P, 1 1 1 P, 3 2 1
P, 2 1 2 P,
Py 1 1 0 P,
P, | 1 1 1 P
Allocation Request

32

When to run Detection Algorithm?

» For every resource request?

» For every request that cannot be immediately satisfied?
* Once every hour?

* When CPU utilization drops below 40%?

33

Deadlock Recovery

+ Killing one/all deadlocked processes
— Crude, but effective
— Keep killing processes, until deadlock broken
— Repeat the entire computation

» Preempt resource/processes until deadlock broken
— Selecting a victim (# resources held, how long executed)
— Rollback (partial or total)
— Starvation (prevent a process from being executed)

34

What happens today?

» Ostrich Approach

» Deadlock avoidance and prevention is often impossible
* Thorough detection of all scenarios too expensive

+ All operating systems have potential deadlocks

» Engineering philosophy:

The price of infrequent crashes in exchange for performance and
user convenience is worth it

35

SQL Server

* Runs detection algorithm:
— Periodically, or
— On demand

* Recovers by terminating:
— Least expensive process, or
— User specified priority

Transaction (Process ID xxx) was deadlocked on (xxx)
resources with another process and has been chosen as the
deadlock victim. Rerun the transaction.

36

Windows DDK Driver Verifier

DDK = Device Driver Kit

Added in XP and later

Uses Deadlock Prevention, by breaking circular-wait

— Checks for a hierarchy in your locking mechanism

Will bugcheck even if your system has not deadlocked!
— (Oxc4), fatal error

You would not use it in a production system
— Useful in development

37

