Deadlocks

System Model

* There are non-shared computer resources
— Maybe more than one instance
— Printers, Semaphores, Tape drives, CPU
Processes need access to these resources
— Acquire resource

« If resource is available, access is granted

« If not available, the process is blocked
— Use resource
— Release resource
» Undesirable scenario:

— Process A acquires resource 1, and is waiting for resource 2

— Process B acquires resource 2, and is waiting for resource 1
= Deadlock!

For example: Semaphores

semaphore: mutex1

=1 /* protects resource 1 */
mutex2 =

1 /* protects resource 2 */

Process A code: Process B code:

{ {
/* initial compute */ /* initial compute */
P(mutex1) P(mutex2)
P(mutex2) P(mutex1)

/* use both resources */ /* use both resources */

V(mutex2)
V(mutex1)

} }

V(mutex2)
V(mutex1)

Deadlocks

Definition:
Deadlock exists among a set of processes if
— Every process is waiting for an event

— This event can be caused only by another process in the set
« Event is the acquire of release of another resource

One-lane bridge

Four Conditions for Deadlock

Coffman et. al. 1971
Necessary conditions for deadlock to exist:
— Mutual Exclusion

« At least one resource must be held is in non-sharable mode
— Hold and wait

« There exists a process holding a resource, and waiting for another
— No preemption

« Resources cannot be preempted
— Circular wait

+ There exists a set of processes {P,, P,, ... Py}, such that
— P, is waiting for P,, P, for P, .... and Py for P,

All four conditions must hold for deadlock to occur

Resource Allocation Graph

Deadlock can be described using a resource allocation graph, RAG
The RAG consists of:

— setof vertices V=P UR,

« where P={P,,P,,...,P.} of processes and R={R;,R,,...,R;} of resources.
— Request edge: directed edge from a process to a resource,

* P—R,; implies that P; has requested R;.
— Assignment edge: directed edge from a resource to a process,

* Ri—P; implies that R; has been allocated to P;.

If the graph has no cycles, deadlock cannot exist.
If the graph has a cycle, deadlock may exist.




RAG Example
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Cycles:
P1-R1-P2-R3-P3-R2-P1
P2-R3-P3-R2-P2
and there is deadlock.

Same cycles, but no deadlock7

Deadlock Prevention

» Can the OS prevent deadlocks?

» Prevention: Negate one of necessary conditions
— Mutual exclusion:
* Make resources sharable
« Not always possible (spooling?)
— Hold and wait
« Do not hold resources when waiting for another
= Request all resources before beginning execution
# Processes do not know what all they will need
# Starvation (if waiting on many popular resources)
# Low utilization (Need resource only for a bit)

« Alternative: Release all resources before requesting anything new
— Still has the last two problems

Dealing with Deadlocks

» Proactive Approaches:
— Deadlock Prevention
* Negate one of 4 necessary conditions
« Prevent deadlock from occurring
— Deadlock Avoidance

« Carefully allocate resources based on future knowledge
« Deadlocks are prevented

» Reactive Approach:
— Deadlock detection and recovery
« Let deadlock happen, then detect and recover from it
» Ignore the problem
— Pretend deadlocks will never occur
— Ostrich approach (real OSs!!!)

Deadlock Prevention

» Prevention: Negate one of necessary conditions

— No preemption:
« Make resources preemptable (2 approaches)
« Preempt requesting processes’ resources if all not available
« Preempt resources of waiting processes to satisfy request
« Good when easy to save and restore state of resource

— CPU registers, memory virtualization

— Circular wait: (2 approaches)
« Single lock for entire system? (Problems)
+ Impose partial ordering on resources, request them in order

Breaking Circular Wait

+ Order resources (lock1, lock2, ...)

Acquire resources in strictly increasing/decreasing order
When requests to multiple resources of same order:

— Make the request a single operation

Intuition: Cycle requires an edge from low to high, and
from high to low numbered node, or to same node

¥ Ordering not always possible, low resource utilization

Two phase locking

» Acquire all resources, if block on any, release all, and retry

print_file:
lock(file);
acquire printer
acquire disk;
..do work...

o . release all
* Pro: dynamic, simple, flexible

* Con:
— Cost with number of resources?
— Length of critical section?
— Hard to know what’s needed a priori




Deadlock Avoidance

+ If we have future information
— Max resource requirement of each process before they execute

» Can we guarantee that deadlocks will never occur?

» Avoidance Approach:
— Before granting resource, check if state is safe
— If the state is safe = no deadlock!

Safe State

» A state is said to be safe, if it has a process sequence
{P4, P,,..., P}, such that for each P,

the resources that P, can still request can be satisfied by
the currently available resources plus the resources held
by all P;, where j <i

» State is safe because OS can definitely avoid deadlock
— by blocking any new requests until safe order is executed

» This avoids circular wait condition
— Process waits until safe state is guaranteed

Safe State Example

« Suppose there are 12 tape drives
max heed  current usage  could ask for

pO 10 5 5
pl 4 2 2
p2 9 2 7

3 drives remain

< current state is safe because a safe sequence exists: <p1,p0,p2>
p1 can complete with current resources
pO can complete with current+p1
p2 can complete with current +p1+p0

« if p2 requests 1 drive, then it must wait to avoid unsafe state.

Safe State Example

(One resource class only)
process holding max claims

A 4 6
B 4 1
c 2 7

unallocated: 2

safe sequence: A,C,B

If C should have a claim of 9 instead of 7,
there is no safe sequence.

Safe State Example

process holding max claims
A 4 6

B 4 1
c 2 9

unallocated: 2
deadlock-free sequence: A,C,B

if C makes only 6 requests

However, this sequence is not safe:
If C should have 7 instead of 6 requests, deadlock exists.

RAG Algorithm

» Works if only one instance of each resource type
» Algorithm:
— Add a claim edge, P—R; if P, can request R, in the future
« Represented by a dashed line in graph
— Arequest P—R; can be granted only if:

+ Adding an assignment edge R; — P, does not introduce cycles
— Since cycles imply unsafe state




Banker’s Algorithm

» Decides whether to grant a resource request.
+ Data structures:

n: integer # of processes

m: integer # of resources

available[1..m] available[i] is # of avail resources of type i
max[1..n,1.m] max demand of each Pi for each Ri
allocation[l..n,1.m] current allocation of resource Rj to Pi
need[1..n,1.m] max # resource Rj that Pi may still request

let request[i] be vector of # of resource Rj Process Pi wants

Basic Algorithm

1. If request[i] > need[i] then
error (asked for too much)
2. If request[i]> available[i] then
wait (can't supply it now)
3. Resources are available to satisfy the request
Let's assume that we satisfy the request. Then we would have:
available = available - request[i]
allocation[i] = allocation [i] + request[i]
need[i] = need [i] - request [i]
Now, check if this would leave us in a safe state:
if yes, grant the request,
if no, then leave the state as is and cause process to wait.
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Safety Check

free[l..m] = available /* how many resources are available */
finish[1..n] = false (for all i) /* none finished yet */

Step 1: Find an i such that finish[i]=false and need][i] <= work
/* find a proc that can complete its request now */
if no such i exists, go fo step 3 /* we're done */

Step 2: Found an i:
finish [i] = true /* done with this process */
free = free + allocation [i]

/* assume this process were fo finish, and its allocation
back to the available list */

go to step 1

Step 3: If finish[i] = true for all i, the system is safe. Else Not
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Banker’s Algorithm: Example
Allocation Max Available
A B C A BC A BC
PO 01 7 53 332
PL 200 322
P2 3 02 9 02
P3 211 2 22
P4 00 2 4 3 3

this is a safe state: safe sequence <P1, P3, P4, P2, PO>

Suppose that P1 requests (1,0,2)
- add it to P1’s allocation and subtract it from Available
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Banker’'s Algorithm: Example

Allocation Max Available
ABC ABC ABC
PO 010 753 230
PL 302 322
P2 302 902
P3 211 222
P4 00 2 4 33

This is still safe: safe seq <P1, P3, P4, PO, P2>

In this new state,
P4 requests (3,3,0)

not enough available resources

PO requests (0,2,0)
let's check resulting state =

Banker’s Algorithm: Example

Allocation | Max Available
ABC ABC ABC
PO 030 753 210
PL 302 322
P2 302 9 02
P3 211 222
PA 00 2 4 33

This is unsafe state (why?)
So PO0’s request will be denied

Problems with Banker’s Algorithm?
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Deadlock Detection & Recovery

If none of these approaches are used, deadlock can
occur
This scheme requires:

— Detection: finding out if deadlock has occurred

+ Keep track of resource allocation (who has what)

« Keep track of pending requests (who is waiting for what)
— Ways to recover from it

Expensive to detect, as well as recover
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RAG Algorithm

Suppose there is only one instance of each resource
Example 1: Is this a deadlock?

— P1has R2 and R3, and is requesting R1

— P2 has R4 and is requesting R3

— P3has R1 and is requesting R4

Example 2: Is this a deadlock?

— P1hasR2, and is requesting R1 and R3

— P2 has R4 and is requesting R3

— P3has R1 and is requesting R4
Use a wait-for graph:

— Collapse resources

— Anedge P—P, exists only if RAG has P—R; & R — Py
— Cycle in wait-for graph = deadlock!
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2nd Detection Algorithm

What if there are multiple resource instances?

Data structures:

n: integer  # of processes

m: integer # of resources

available[1..m] available[i] is # of avail resources of type i
request[l.n,1.m]  max demand of each Pi for each Ri
allocation[1..n,1..m] current allocation of resource Rj to Pi
finish[1..n] true if Pi's request can be satisfied

let request[i] be vector of # instances of each resource Pi wants

27

2nd Detection Algorithm

work[]=available[]
for all i <n, if allocation[i]# 0
then finish[i]=false else finish[i]=true
find an index i such that:
finish[i]=false;
request[ilk=work
if no such i exists, go to 4.
work=work+allocation[i]
finish[i] = true, go to 2
if finish[i] = false for some i,
then system is deadlocked with Pi in deadlock

Example

Finished = {F, F, F, F};
Work = Available = (0, 0, 1);

R, | R, | R R | R | R
Ppo| 111 P, | 3 | 2 1
P, | 2 | 1| 2 P, | 2 | 2 1
Py | 1 | 1|0 P, | 0 | 0O 1
Po | 1| 11 P, | 1 1 1
Allocation Request
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Allocation Request

28
Example
Finished = {F, F, T, F}
Work = (1,1, 1);
Ry R, R, R, R, R;
Py 1 1 1 P, 3 2 1
P, 2 1 2 P, 2 2 1
P, 1 1 0 P,
P, 1 1 1 P, 1 1 1
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Example

Finished = {F,F, T, T}

Work = (2, 2, 2);
Ri | R | R R, | R, | R
Py 1 1 1 P, 3 2 1
P, 2 1 2 @ 2 2 1
P3 1 1 0 P,
P, 1 1 1 P,
Allocation Request
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Example
Finished ={F, T, T, T}
Work = (4, 3, 2);
Ri | R | R R, | R, | R
P, 1 1 1 P, 3 2 1
P, 2 1 2 P,
Py 1 1 0 P,
P, | 1 1 1 P
Allocation Request
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When to run Detection Algorithm?

» For every resource request?

» For every request that cannot be immediately satisfied?
* Once every hour?

* When CPU utilization drops below 40%?
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Deadlock Recovery

+ Killing one/all deadlocked processes
— Crude, but effective
— Keep killing processes, until deadlock broken
— Repeat the entire computation

» Preempt resource/processes until deadlock broken
— Selecting a victim (# resources held, how long executed)
— Rollback (partial or total)
— Starvation (prevent a process from being executed)
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What happens today?

» Ostrich Approach

» Deadlock avoidance and prevention is often impossible
* Thorough detection of all scenarios too expensive

+ All operating systems have potential deadlocks

» Engineering philosophy:

The price of infrequent crashes in exchange for performance and
user convenience is worth it
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SQL Server

* Runs detection algorithm:
— Periodically, or
— On demand

* Recovers by terminating:
— Least expensive process, or
— User specified priority

Transaction (Process ID xxx) was deadlocked on (xxx)
resources with another process and has been chosen as the
deadlock victim. Rerun the transaction.
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Windows DDK Driver Verifier

DDK = Device Driver Kit

Added in XP and later

Uses Deadlock Prevention, by breaking circular-wait

— Checks for a hierarchy in your locking mechanism

Will bugcheck even if your system has not deadlocked!
— (Oxc4), fatal error

You would not use it in a production system
— Useful in development
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