
1

CPU Scheduling

Announcements

The scheduling big picture Today: how to schedule
processes/threads in the ready queue

Process Scheduling
• “process” and “thread” used interchangeably

• Many processes in “ready” state
• Which ready process to pick to run on the CPU?

– 0 ready processes: run idle loop
– 1 ready process: easy!
– > 1 ready process: what to do?

New Ready Running Exit

Waiting

When does scheduler run?
• Non-preemptive minimum

– Process runs until voluntarily relinquish CPU
• process blocks on an event (e.g., I/O or synchronization)
• process terminates

• Preemptive minimum
– All of the above, plus:

• Event completes: process moves from blocked to ready
• Timer interrupts
• Implementation: process can be interrupted in favor of another

New Ready Running Exit

Waiting

2

Process Model
• Process alternates between CPU and I/O bursts

– CPU-bound jobs: Long CPU bursts

– I/O-bound: Short CPU bursts

– I/O burst = process idle, switch to another “for free”
– Problem: don’t know job’s type before running

• An underlying assumption:
– “response time” most important for interactive jobs (I/O bound)

Scan for viruses

emacschat

Scheduling Evaluation Metrics
• Many quantitative criteria for evaluating sched algo:

– CPU utilization: percentage of time the CPU is not idle
– Throughput: completed processes per time unit
– Turnaround time: submission to completion
– Waiting time: time spent on the ready queue
– Response time: response latency
– Predictability: variance in any of these measures

• The right metric depends on the context

“The perfect CPU scheduler”
• Minimize latency: response or job completion time
• Maximize throughput: Maximize jobs / time.
• Maximize utilization: keep I/O devices busy.

– Recurring theme with OS scheduling

• Fairness: everyone makes progress, no one starves

Problem Cases
• Blindness about job types

– I/O goes idle

• Optimization involves favoring jobs of type “A” over “B”.
– Lots of A’s? B’s starve

• Interactive process trapped behind others.
– Response time sucks for no fundamental reason

• Priorities: A’s priority > B’s.
– B never runs

Scheduling Algorithms FCFS
• First-come First-served (FCFS) (FIFO)

– Jobs are scheduled in order of arrival
– Non-preemptive

• Problem:
– Average waiting time depends on arrival order

• Advantage: really simple!

time
P1 P2 P3

0 16 20 24

P1P2 P3

0 4 8 24

Convoy Effect
• A CPU bound job will hold CPU until done,

– or it causes an I/O burst
• rare occurrence, since the thread is CPU-bound

⇒ long periods where no I/O requests issued, and CPU held
– Result: poor I/O device utilization

• Example: one CPU bound job, many I/O bound
• CPU bound runs (I/O devices idle)
• CPU bound blocks
• I/O bound job(s) run, quickly block on I/O
• CPU bound runs again
• I/O completes
• CPU bound still runs while I/O devices idle (continues…)

– Simple hack: run process whose I/O completed?
• What is a potential problem?

3

Scheduling Algorithms: SJF
• Shortest Job First (SJF)

– Choose the job with the shortest next CPU burst
– Provably optimal for minimizing average waiting time

• Problem:
– Impossible to know the length of the next CPU burst

P1 P2P3

0 15 21 24

P1P2 P3

0 3 9 24

P2 P3

Scheduling Algorithms:
Preemptive SJF

• SJF can be either preemptive or non-preemptive
– New, short job arrives; current process has long time to execute

• Also called shortest remaining time first

P1

P2

P3

0 6 2110

P1P3 P1

P2

0 6 2410 13

• Approximate next CPU-burst duration
– from the durations of the previous bursts

• The past can be a good predictor of the future

• No need to remember entire past history

• Use exponential average:
tn duration of the nth CPU burst
τn+1 predicted duration of the (n+1)st CPU burst

τn+1 = α tn + (1- α) τn
where 0 ≤ α ≤ 1

α determines the weight placed on past behavior

Shortest Job First Prediction What is dumb about this picture?

Priority Scheduling
• Priority Scheduling

– Choose next job based on priority
– For SJF, priority = expected CPU burst
– Can be either preemptive or non-preemptive

• Problem:
– Starvation: jobs can wait indefinitely

• Solution to starvation
– Age processes: increase priority as a function of waiting time

Round Robin

• Round Robin (RR)
– Often used for timesharing
– Ready queue is treated as a circular queue (FIFO)
– Each process is given a time slice called a quantum
– It is run for the quantum or until it blocks
– RR allocates the CPU uniformly (fairly) across participants.
– If average queue length is n, each participant gets 1/n

4

RR with Time Quantum = 20
Process Burst Time

P1 53
P2 17
P3 68
P4 24

• The Gantt chart is:

• Higher average turnaround than SJF,
• But better response time

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Another Gantt Chart

What is dumb about this picture? RR: Choice of Time Quantum
• Performance depends on length of the timeslice

– Context switching isn’t a free operation.
– If timeslice time is set too high

• attempting to amortize context switch cost, you get FCFS.
• i.e. processes will finish or block before their slice is up anyway

– If it’s set too low
• you’re spending all of your time context switching between threads.

– Timeslice frequently set to ~100 milliseconds
– Context switches typically cost < 1 millisecond

Moral:
Context switch is usually negligible (< 1% per timeslice)
unless you context switch too frequently and lose all
productivity

Scheduling Algorithms
• Multi-level Queue Scheduling
• Implement multiple ready queues based on job “type”

– interactive processes
– CPU-bound processes
– batch jobs
– system processes
– student programs

• Different queues may be scheduled using different algos
• Intra-queue CPU allocation is either strict or proportional
• Problem: Classifying jobs into queues is difficult

– A process may have CPU-bound phases as well as interactive ones

Multilevel Queue Scheduling

System Processes

Interactive Processes

Batch Processes

Student Processes
Lowest priority

Highest priority

5

Scheduling Algorithms
• Multi-level Feedback Queues
• Implement multiple ready queues

– Different queues may be scheduled using different algorithms
– Just like multilevel queue scheduling, but assignments are not static

• Jobs move from queue to queue based on feedback
– Feedback = The behavior of the job,

• e.g. does it require the full quantum for computation, or
• does it perform frequent I/O ?

• Very general algorithm
• Need to select parameters for:

– Number of queues
– Scheduling algorithm within each queue
– When to upgrade and downgrade a job

Multilevel Feedback Queues

Quantum = 2

Quantum = 4

Quantum = 8

FCFS

Lowest priority

Highest priority

A Multi-level System

low

high

high

priority

timeslice

I/O bound jobs

CPU bound jobs

Thread Scheduling
Since all threads share code & data segments
• Option 1: Ignore this fact
• Option 2: Gang scheduling

– run all threads belonging to a process together (multiprocessor only)
– if a thread needs to synchronize with another thread

• the other one is available and active
• Option 3: Two-level scheduling:

– Medium level scheduler
– schedule processes, and within each process, schedule threads
– reduce context switching overhead and improve cache hit ratio

• Option 4: Space-based affinity:
– assign threads to processors (multiprocessor only)
– improve cache hit ratio, but can bite under low-load condition

Real-time Scheduling

• Real-time processes have timing constraints
– Expressed as deadlines or rate requirements

• Common RT scheduling policies
– Rate monotonic

• Just one scalar priority related to the periodicity of the job
• Priority = 1/rate
• Static

– Earliest deadline first (EDF)
• Dynamic but more complex
• Priority = deadline

• Both require admission control to provide guarantees

Actual OS algorithms

• All use preemption
• All have priorities

– Normally along real-time, interactive, system
lines

• All have different time-slice sizes for
different priorities

• But the details vary tremendously

