Threads

Announcements

Cooperating Processes

* Processes can be independent or work cooperatively
« Cooperating processes can be used:
— to gain speedup by overlapping activities or working in parallel
— to better structure an application as set of cooperating processes
— to share information between jobs
* Sometimes processes are structured as a pipeline
— each produces work for the next stage that consumes it

Case for Parallelism

main() main()
read_data() read_data()
for(all data) for(all data)
compute(); compute();
write_data(); CreateProcess(write_data());
- endfor
endfor

Case for Parallelism

Consider the following code fragment
for(k = 0; k < n; k++)
a[k] = b[k] * c[k] + d[k] * e[k];

CreateProcess(fn, 0, n/2);
CreateProcess(fn, n/2, n);
fn(l, m)
for(k = I; k < m; k++)
a[k] = b[k] * c[k] + d[k] * e[K];

Case for Parallelism

Consider a Web server
create a number of processes, and for each process do:

— get network message from client
— get URL data from disk

— compose response

— send response

Processes and Threads

« A full process includes numerous things:
— an address space (defining all the code and data pages)

— OS resources and accounting information

— a “thread of control”,

« defines where the process is currently executing

« That is the PC and registers

@ Creating a new process is costly

— all of the structures (e.g., page tables) that must be allocated
3 Communicating between processes is costly

— most communication goes through the OS

“Lightweight” Processes

» ldea: why don’t we separate the idea of process

(address space, accounting, etc.) from that of

the minimal “thread of control” (PC, SP,

registers)?

Like our “heavyweight” processes:

— Each has its own PC, registers, and stack pointer

Unlike our “heavyweight” processes:

— They all share the same code and data (address
space)

— They all share the same privileges

— They share almost everything in the process

Threads and Processes

* Most operating systems therefore support two entities:

— the process,

« which defines the address space and general process attributes

— the thread,

« which defines a sequential execution stream within a process
« Athread is bound to a single process.
— For each process, however, there may be many threads.
* Threads are the unit of scheduling
* Processes are containers in which threads execute

Multithreaded Processes

| code | [data | | files | | code | | data | | files |
|eeglsturs slack I reqgisters (|| registers (| registars
stack stack stack
thraad — ; ? ; ;—— thread
single-threaded process muflithreaded process

Threads vs. Processes

« Athread has no data segment
or heap

« Athread cannot live on its own,
it must live within a process

» There can be more than one
thread in a process, the first
thread calls main & has the
process’s stack

« Inexpensive creation

« Inexpensive context switching

+ If athread dies, its stack is
reclaimed

A process has code/data/heap
& other segments

There must be at least one
thread in a process

Threads within a process share
code/data’/heap, share 1/0, but
each has its own stack &
registers

Expensive creation

Expensive context switching

If a process dies, its resources
are reclaimed & all threads die

D = address space
O =thread @

How OSes support threads?

o]lo

o] @)

example: MS/DOS example: Unix

o ©
O O @

eo>§21ple: Small device example: Windows, Linux, Mach

Cooperative Threads

Each thread runs until it decides to give up the CPU
main()
{

tid t1 = CreateThread(fn, arg);

;i'eld(tl);
}
fn(int arg)
{

Yield(any);

Cooperative Threads

« Cooperative threads use non pre-emptive scheduling

« Advantages:
— Simple
* Small, real-time OSs
« Disadvantages:
— For badly written code
« Scheduler gets invoked only when Yield is called
« Athread could yield the processor when it blocks for 1/O

.

.

Non-Cooperative Threads

No explicit control passing among threads

Rely on a scheduler to decide which thread to run
A thread can be pre-empted at any point

Often called pre-emptive threads

Most modern thread packages use this approach

Kernel Threads

« Also called Lightweight Processes (LWP)
« Kernel threads still suffer from performance problems

« Operations on kernel threads are slow because:
— athread operation still requires a system call
— kernel threads may be overly general
« to support needs of different users, languages, etc.
— the kernel doesn't trust the user
« there must be lots of checking on kernel calls

.

.

User-Level Threads

For speed, implement threads at the user level
A user-level thread is managed by the run-time system
— user-level code that is linked with your program
Each thread is represented simply by:

- PC

— Registers

— Stack

— Small control block

All thread operations are at the user-level:

— Creating a new thread

— switching between threads

— synchronizing between threads

User-Level Threads

« User-level threads
— the thread scheduler is part of a library, outside the kernel
— thread context switching and scheduling is done by the library
— Can either use cooperative or pre-emptive threads
« cooperative threads are implemented by:
— CreateThread(), DestroyThread(), Yield(), Suspend(), etc.
« pre-emptive threads are implemented with a timer (signal)
— where the timer handler decides which thread to run next

Example User Thread Interface

t = thread_fork(initial context)
create a new thread of control
thread_stop()
stop the calling thread, sometimes called thread_block
thread_start(t)
start the named thread
thread_yield()
voluntarily give up the processor
thread_exit()
terminate the calling thread, sometimes called thread_destroy

Key Data Structures

your process address space

your program:

your data (shared by

fori (1, 10, I++) all your threads):

thread_fork(l);

queue of thread control blocks

user-level thread code:
proc thread_fork()...

proc thread_block()...

proc thread_exit()... per-thread stacks

Multiplexing User-Level Threads

The user-level thread package sees a “virtual” processor(s)

— it schedules user-level threads on these virtual processors

— each “virtual” processor is implemented by a kernel thread
The big picture:

— Create as many kernel threads as there are processors

— Create as many user-level threads as the application needs

— Multiplex user-level threads on top of the kernel-level threads
Why not just create as many kernel-level threads as app needs?

— Context switching

— Resources

User-Level vs. Kernel Threads

User-Level Kernel-Level

« Managed by application * Managed by kernel

» Kernel not aware of thread + Consumes kernel resources

» Context switching cheap » Context switching expensive

« Create as many as needed * Number limited by kernel resources
* Must be used with care * Simpler to use

Key issue: kernel threads provide virtual processors to user-level threads,
but if all of kthreads block, then all user-level threads will block
even if the program logic allows them to proceed

Many-to-One Model

user-level
threads

Thread creation, scheduling, synchronization done in user space.
Mainly used in language systems, portable libraries

4Fast - no system calls required

4Few system dependencies; portable

3No parallel execution of threads - can't exploit multiple CPUs
2All threads block when one uses synchronous 1/0

One-to-one Model
user-level
threads
| | |
Thread creation, scheduling, synchronization require system calls
Used in Linux Threads, Windows

4 More concurrency

% Better multiprocessor performance

2 Each user thread requires creation of kernel thread

% Each thread requires kernel resources; limits number of total threads

Many-to-Many Model
“m%fgig\
®e e

If U < L? No benefits of multithreading

If U > L, some threads may have to wait for an LWP to run
« Active thread - executing on an LWP
* Runnable thread - waiting for an LWP

A thread gives up control of LWP under the following:
— synchronization, lower priority, yielding, time slicing

Two-level Model

e
“mmjggg 5
el (owe e e

Combination of one-to-one + “strict” many-to-many models
Supports both bound and unbound threads

— Bound threads - permanently mapped to a single, dedicated LWP

— Unbound threads - may move among LWPs in set
Thread creation, scheduling, synchronization done in user space
Flexible approach, “best of both worlds”

Used in Solaris implementation of Pthreads and several other Unix
implementations (IRIX, HP-UX)

Multithreading Issues

* Semantics of fork() and exec() system calls
* Thread cancellation
— Asynchronous vs. Deferred Cancellation
< Signal handling
— Which thread to deliver it to?
¢ Thread pools
— Creating new threads, unlimited number of threads
* Thread specific data
« Scheduler activations
— Maintaining the correct number of scheduler threads

Thread Hazards

inta=1,b=2,w=2;
main() {
CreateThread(fn, 4);
CreateThread(fn, 4);
while(w) ;
}
Q) {
intv=a+b;
et

}

Concurrency Problems

A statement like w-- in C (or C++) is implemented by several machine
instructions:

Id r4, #w
add r4,r4, -1
st 4, #w

Now, imagine the following sequence, what is the value of w?

Id r4, #w
Id rd, #w
add r4,rd, -1
st rd, #w

add 4, r4, -1
st rd, #w

