
1

Threads

Announcements

Cooperating Processes
• Processes can be independent or work cooperatively
• Cooperating processes can be used:

– to gain speedup by overlapping activities or working in parallel
– to better structure an application as set of cooperating processes
– to share information between jobs

• Sometimes processes are structured as a pipeline
– each produces work for the next stage that consumes it

main()
read_data()
for(all data)

compute();
CreateProcess(write_data());

endfor

Case for Parallelism
main()
read_data()
for(all data)
compute();
write_data();

endfor

Consider the following code fragment
for(k = 0; k < n; k++)

a[k] = b[k] * c[k] + d[k] * e[k];

CreateProcess(fn, 0, n/2);
CreateProcess(fn, n/2, n);
fn(l, m)

for(k = l; k < m; k++)
a[k] = b[k] * c[k] + d[k] * e[k];

Case for Parallelism Case for Parallelism
Consider a Web server

create a number of processes, and for each process do:
– get network message from client
– get URL data from disk
– compose response
– send response

2

Processes and Threads
• A full process includes numerous things:

– an address space (defining all the code and data pages)
– OS resources and accounting information
– a “thread of control”,

• defines where the process is currently executing
• That is the PC and registers

Creating a new process is costly
– all of the structures (e.g., page tables) that must be allocated

Communicating between processes is costly
– most communication goes through the OS

“Lightweight” Processes
• Idea: why don’t we separate the idea of process

(address space, accounting, etc.) from that of
the minimal “thread of control” (PC, SP,
registers)?

• Like our “heavyweight” processes:
– Each has its own PC, registers, and stack pointer

• Unlike our “heavyweight” processes:
– They all share the same code and data (address

space)
– They all share the same privileges
– They share almost everything in the process

Threads and Processes
• Most operating systems therefore support two entities:

– the process,
• which defines the address space and general process attributes

– the thread,
• which defines a sequential execution stream within a process

• A thread is bound to a single process.
– For each process, however, there may be many threads.

• Threads are the unit of scheduling
• Processes are containers in which threads execute

Multithreaded Processes

Threads vs. Processes
• A thread has no data segment

or heap
• A thread cannot live on its own,

it must live within a process
• There can be more than one

thread in a process, the first
thread calls main & has the
process’s stack

• Inexpensive creation
• Inexpensive context switching
• If a thread dies, its stack is

reclaimed

• A process has code/data/heap
& other segments

• There must be at least one
thread in a process

• Threads within a process share
code/data/heap, share I/O, but
each has its own stack &
registers

• Expensive creation
• Expensive context switching
• If a process dies, its resources

are reclaimed & all threads die

How OSes support threads?

example: MS/DOS example: Unix

example: Small device
OS’s example: Windows, Linux, Mach

= address space

= thread

3

Cooperative Threads
Each thread runs until it decides to give up the CPU
main()
{

tid t1 = CreateThread(fn, arg);
…
Yield(t1);

}
fn(int arg)
{

…
Yield(any);

}

Cooperative Threads
• Cooperative threads use non pre-emptive scheduling

• Advantages:
– Simple

• Small, real-time OSs

• Disadvantages:
– For badly written code

• Scheduler gets invoked only when Yield is called
• A thread could yield the processor when it blocks for I/O

Non-Cooperative Threads
• No explicit control passing among threads
• Rely on a scheduler to decide which thread to run
• A thread can be pre-empted at any point
• Often called pre-emptive threads
• Most modern thread packages use this approach

Kernel Threads
• Also called Lightweight Processes (LWP)
• Kernel threads still suffer from performance problems
• Operations on kernel threads are slow because:

– a thread operation still requires a system call
– kernel threads may be overly general

• to support needs of different users, languages, etc.
– the kernel doesn’t trust the user

• there must be lots of checking on kernel calls

User-Level Threads
• For speed, implement threads at the user level
• A user-level thread is managed by the run-time system

– user-level code that is linked with your program

• Each thread is represented simply by:
– PC
– Registers
– Stack
– Small control block

• All thread operations are at the user-level:
– Creating a new thread
– switching between threads
– synchronizing between threads

User-Level Threads
• User-level threads

– the thread scheduler is part of a library, outside the kernel
– thread context switching and scheduling is done by the library
– Can either use cooperative or pre-emptive threads

• cooperative threads are implemented by:
– CreateThread(), DestroyThread(), Yield(), Suspend(), etc.

• pre-emptive threads are implemented with a timer (signal)
– where the timer handler decides which thread to run next

4

Example User Thread Interface
t = thread_fork(initial context)

create a new thread of control

thread_stop()
stop the calling thread, sometimes called thread_block

thread_start(t)
start the named thread

thread_yield()
voluntarily give up the processor

thread_exit()
terminate the calling thread, sometimes called thread_destroy

Key Data Structures
your process address space

your program:

for i (1, 10, I++)
thread_fork(I);

….

user-level thread code:
proc thread_fork()…

proc thread_block()…

proc thread_exit()...

queue of thread control blocks

per-thread stacks

your data (shared by
all your threads):

Multiplexing User-Level Threads
• The user-level thread package sees a “virtual” processor(s)

– it schedules user-level threads on these virtual processors
– each “virtual” processor is implemented by a kernel thread

• The big picture:
– Create as many kernel threads as there are processors
– Create as many user-level threads as the application needs
– Multiplex user-level threads on top of the kernel-level threads

• Why not just create as many kernel-level threads as app needs?
– Context switching
– Resources

User-Level vs. Kernel Threads

User-Level
• Managed by application
• Kernel not aware of thread
• Context switching cheap
• Create as many as needed
• Must be used with care

Kernel-Level
• Managed by kernel
• Consumes kernel resources
• Context switching expensive
• Number limited by kernel resources
• Simpler to use

Key issue: kernel threads provide virtual processors to user-level threads,
but if all of kthreads block, then all user-level threads will block
even if the program logic allows them to proceed

Many-to-One Model

LWP

user-level
threads

Thread creation, scheduling, synchronization done in user space.
Mainly used in language systems, portable libraries

Fast - no system calls required
Few system dependencies; portable
No parallel execution of threads - can’t exploit multiple CPUs
All threads block when one uses synchronous I/O

One-to-one Model

More concurrency
Better multiprocessor performance
Each user thread requires creation of kernel thread
Each thread requires kernel resources; limits number of total threads

LWP

user-level
threads

LWP LWP

Thread creation, scheduling, synchronization require system calls
Used in Linux Threads, Windows

5

Many-to-Many Model

LWP

user-level
threads

LWP LWP

If U < L? No benefits of multithreading
If U > L, some threads may have to wait for an LWP to run

• Active thread - executing on an LWP
• Runnable thread - waiting for an LWP

A thread gives up control of LWP under the following:
– synchronization, lower priority, yielding, time slicing

Two-level Model

LWP

user-level
threads

LWP LWP LWP

• Combination of one-to-one + “strict” many-to-many models
• Supports both bound and unbound threads

– Bound threads - permanently mapped to a single, dedicated LWP
– Unbound threads - may move among LWPs in set

• Thread creation, scheduling, synchronization done in user space
• Flexible approach, “best of both worlds”
• Used in Solaris implementation of Pthreads and several other Unix

implementations (IRIX, HP-UX)

Multithreading Issues
• Semantics of fork() and exec() system calls
• Thread cancellation

– Asynchronous vs. Deferred Cancellation

• Signal handling
– Which thread to deliver it to?

• Thread pools
– Creating new threads, unlimited number of threads

• Thread specific data
• Scheduler activations

– Maintaining the correct number of scheduler threads

Thread Hazards

int a = 1, b = 2, w = 2;
main() {

CreateThread(fn, 4);
CreateThread(fn, 4);
while(w) ;

}
fn() {

int v = a + b;
w--;

}

Concurrency Problems
A statement like w-- in C (or C++) is implemented by several machine

instructions:
ld r4, #w
add r4, r4, -1
st r4, #w

Now, imagine the following sequence, what is the value of w?

ld r4, #w

add r4, r4, -1
st r4, #w

ld r4, #w
add r4, r4, -1
st r4, #w

