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Processes

Announcements

Why Processes? Simplicity + Speed

• Hundreds of things going on in the system

• How to make things simple?
– Separate each in an isolated process
– Decomposition

• How to speed-up?
– Overlap I/O bursts of one process with CPU bursts of another
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What is a process?

• The unit of execution
• The unit of scheduling
• Thread of execution + address space
• Is a program in execution

– Sequential, instruction-at-a-time execution of a program.

The same as “job” or “task” or “sequential process”

What is a program?
A program consists of:

– Code: machine instructions
– Data: variables stored and manipulated in memory

• initialized variables (globals)
• dynamically allocated variables (malloc, new)
• stack variables (C automatic variables, function arguments)

– DLLs: libraries that were not compiled or linked with the program
• containing code & data, possibly shared with other programs

– mapped files: memory segments containing variables (mmap())
• used frequently in database programs

Preparing a Program
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.o files
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Executable file
(must follow standard format,

such as ELF on Linux, 
Microsoft PE on Windows)
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Initialized data

BSS

Symbol table

Line numbers
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static libraries
(libc, streams…)
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Running a program
• OS creates a “process” and allocates memory for it
• The loader:

– reads and interprets the executable file
– sets process’s memory to contain code & data from executable
– pushes “argc”, “argv”, “envp” on the stack
– sets the CPU registers properly & calls “__start()” [Part of CRT0]

• Program start running at __start(), which calls main()
– we say “process” is running, and no longer think of “program”

• When main() returns, CRT0 calls “exit()”
– destroys the process and returns all resources

Process != Program
Header

Code

Initialized data

BSS

Symbol table

Line numbers

Ext. refs

Code

Initialized data

BSS

Heap

Stack

DLL’s

mapped segments

Executable

Process 
address space

Program is passive
• Code + data

Process is running program
• stack, regs, program counter

Example:
We both run IE:
- Same program 
- Separate processes

Process States
• Many processes in system, only one on CPU
• “Execution State” of a process:

– Indicates what it is doing
– Basically 3 states:

• Ready:  waiting to be assigned to the CPU
• Running:  executing instructions on the CPU
• Waiting:  waiting for an event, e.g. I/O completion 

• Process moves across different states

Process State Transitions

New
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Exit

Waiting

admitted

interrupt
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dispatch done

Processes hop across states as a result of:
• Actions they perform, e.g. system calls
• Actions performed by OS, e.g. rescheduling
• External actions, e.g. I/O

Process Data Structures
• OS represents a process using a PCB

– Process Control Block
– Has all the details of a process

Process Id

Process State

General Purpose Registers

Stack Pointer

Program Counter

Accounting Info

Security Credentials

Username of owner

Queue Pointers

Signal Masks

Memory Management

…

Context Switch
• For a running process

– All registers are loaded in CPU and modified
• E.g. Program Counter, Stack Pointer, General Purpose Registers

• When process relinquishes the CPU, the OS
– Saves register values to the PCB of that process

• To execute another process, the OS
– Loads register values from PCB of that process

⇒Context Switch
− Process of switching CPU from one process to another
− Very machine dependent for types of registers
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Details of Context Switching
• Very tricky to implement

– OS must save state without changing state
– Should run without touching any registers

• CISC: single instruction saves all state
• RISC: reserve registers for kernel

– Or way to save a register and then continue

• Overheads: CPU is idle during a context switch
– Explicit: 

• direct cost of loading/storing registers to/from main memory
– Implicit:

• Opportunity cost of flushing useful caches (cache, TLB, etc.)
• Wait for pipeline to drain in pipelined processors

How to create a process?
• Double click on a icon?
• After boot OS starts the first process

– E.g. sched for Solaris, ntoskrnel.exe for XP
• The first process creates other processes:

– the creator is called the parent process
– the created is called the child process
– the parent/child relationships is expressed by a process tree

• For example, in UNIX the second process is called init
– it creates all the gettys (login processes) and daemons 
– it should never die
– it controls the system configuration (#processes, priorities…)

• Explorer.exe in Windows for graphical interface

Processes Under UNIX
• Fork() system call is only way to create a new process
• int fork() does many things at once:

– creates a new address space (called the child)
– copies the parent’s address space into the child’s
– starts a new thread of control in the child’s address space
– parent and child are equivalent -- almost

• in parent, fork() returns a non-zero integer
• in child, fork() returns a zero.
• difference allows parent and child to distinguish

• int fork() returns TWICE!

Example
main(int argc, char **argv)
{

char *myName = argv[1];
int cpid = fork();
if (cpid == 0) {

printf(“The child of %s is %d\n”, myName, getpid());
exit(0);

} else {
printf(“My child is %d\n”, cpid);
exit(0);

}
}

What does this program print?

Bizarre But Real

lace:tmp<15> cc a.c
lace:tmp<16> ./a.out foobar
The child of foobar is 23874
My child is 23874

Parent

Child

Operating 
System

fork()

retsys

v0=0v0=23874

Fork is half the story
• Fork() gets us a new address space, 

– but parent and child share EVERYTHING
• memory, operating system state

• int exec(char *programName) completes the picture
– throws away the contents of the calling address space
– replaces it with the program named by programName
– starts executing at header.startPC
– Does not return

• Pros: Clean, simple
• Con: duplicate operations
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Starting a new program
main(int argc, char **argv)
{

char *myName = argv[1];
char *progName = argv[2];

int cpid = fork();
if (cpid == 0) {

printf(“The child of %s is %d\n”, myName, getpid());
execlp(“/bin/ls”,   // executable name

“ls”, NULL); // null terminated argv
printf(“OH NO. THEY LIED TO ME!!!\n”);

} else {
printf(“My child is %d\n”, cpid);
exit(0);

}
}

Process Termination
• Process executes last statement and OS decides(exit)

– Output data from child to parent (via wait)
– Process’ resources are deallocated by operating system

• Parent may terminate execution of child process (abort)
– Child has exceeded allocated resources
– Task assigned to child is no longer required
– If parent is exiting

• Some OSes don’t allow child to continue if parent terminates
– All children terminated - cascading termination

ProcExp Demo
• Windows process hierarchy
• explorer.exe and the system idle process
• Windows base priority mechanism

– 0, 4, 8, 13, 24
– What is procexp’s priority?

• Creating a new process
• Terminating a process


