
1

Processes

Announcements

Why Processes? Simplicity + Speed

• Hundreds of things going on in the system

• How to make things simple?
– Separate each in an isolated process
– Decomposition

• How to speed-up?
– Overlap I/O bursts of one process with CPU bursts of another

gccemacsnfsd

lprlswww

emacsnfsd
lprls

www
OS

OS

What is a process?

• The unit of execution
• The unit of scheduling
• Thread of execution + address space
• Is a program in execution

– Sequential, instruction-at-a-time execution of a program.

The same as “job” or “task” or “sequential process”

What is a program?
A program consists of:

– Code: machine instructions
– Data: variables stored and manipulated in memory

• initialized variables (globals)
• dynamically allocated variables (malloc, new)
• stack variables (C automatic variables, function arguments)

– DLLs: libraries that were not compiled or linked with the program
• containing code & data, possibly shared with other programs

– mapped files: memory segments containing variables (mmap())
• used frequently in database programs

Preparing a Program

source
file

compiler/
assembler

.o files

Linker

Executable file
(must follow standard format,

such as ELF on Linux,
Microsoft PE on Windows)

Header

Code

Initialized data

BSS

Symbol table

Line numbers

Ext. refs

static libraries
(libc, streams…)

2

Running a program
• OS creates a “process” and allocates memory for it
• The loader:

– reads and interprets the executable file
– sets process’s memory to contain code & data from executable
– pushes “argc”, “argv”, “envp” on the stack
– sets the CPU registers properly & calls “__start()” [Part of CRT0]

• Program start running at __start(), which calls main()
– we say “process” is running, and no longer think of “program”

• When main() returns, CRT0 calls “exit()”
– destroys the process and returns all resources

Process != Program
Header

Code

Initialized data

BSS

Symbol table

Line numbers

Ext. refs

Code

Initialized data

BSS

Heap

Stack

DLL’s

mapped segments

Executable

Process
address space

Program is passive
• Code + data

Process is running program
• stack, regs, program counter

Example:
We both run IE:
- Same program
- Separate processes

Process States
• Many processes in system, only one on CPU
• “Execution State” of a process:

– Indicates what it is doing
– Basically 3 states:

• Ready: waiting to be assigned to the CPU
• Running: executing instructions on the CPU
• Waiting: waiting for an event, e.g. I/O completion

• Process moves across different states

Process State Transitions

New

Ready Running

Exit

Waiting

admitted

interrupt

I/O
 or

 ev
en

t w
aitI/O or event

completion

dispatch done

Processes hop across states as a result of:
• Actions they perform, e.g. system calls
• Actions performed by OS, e.g. rescheduling
• External actions, e.g. I/O

Process Data Structures
• OS represents a process using a PCB

– Process Control Block
– Has all the details of a process

Process Id

Process State

General Purpose Registers

Stack Pointer

Program Counter

Accounting Info

Security Credentials

Username of owner

Queue Pointers

Signal Masks

Memory Management

…

Context Switch
• For a running process

– All registers are loaded in CPU and modified
• E.g. Program Counter, Stack Pointer, General Purpose Registers

• When process relinquishes the CPU, the OS
– Saves register values to the PCB of that process

• To execute another process, the OS
– Loads register values from PCB of that process

⇒Context Switch
− Process of switching CPU from one process to another
− Very machine dependent for types of registers

3

Details of Context Switching
• Very tricky to implement

– OS must save state without changing state
– Should run without touching any registers

• CISC: single instruction saves all state
• RISC: reserve registers for kernel

– Or way to save a register and then continue

• Overheads: CPU is idle during a context switch
– Explicit:

• direct cost of loading/storing registers to/from main memory
– Implicit:

• Opportunity cost of flushing useful caches (cache, TLB, etc.)
• Wait for pipeline to drain in pipelined processors

How to create a process?
• Double click on a icon?
• After boot OS starts the first process

– E.g. sched for Solaris, ntoskrnel.exe for XP
• The first process creates other processes:

– the creator is called the parent process
– the created is called the child process
– the parent/child relationships is expressed by a process tree

• For example, in UNIX the second process is called init
– it creates all the gettys (login processes) and daemons
– it should never die
– it controls the system configuration (#processes, priorities…)

• Explorer.exe in Windows for graphical interface

Processes Under UNIX
• Fork() system call is only way to create a new process
• int fork() does many things at once:

– creates a new address space (called the child)
– copies the parent’s address space into the child’s
– starts a new thread of control in the child’s address space
– parent and child are equivalent -- almost

• in parent, fork() returns a non-zero integer
• in child, fork() returns a zero.
• difference allows parent and child to distinguish

• int fork() returns TWICE!

Example
main(int argc, char **argv)
{

char *myName = argv[1];
int cpid = fork();
if (cpid == 0) {

printf(“The child of %s is %d\n”, myName, getpid());
exit(0);

} else {
printf(“My child is %d\n”, cpid);
exit(0);

}
}

What does this program print?

Bizarre But Real

lace:tmp<15> cc a.c
lace:tmp<16> ./a.out foobar
The child of foobar is 23874
My child is 23874

Parent

Child

Operating
System

fork()

retsys

v0=0v0=23874

Fork is half the story
• Fork() gets us a new address space,

– but parent and child share EVERYTHING
• memory, operating system state

• int exec(char *programName) completes the picture
– throws away the contents of the calling address space
– replaces it with the program named by programName
– starts executing at header.startPC
– Does not return

• Pros: Clean, simple
• Con: duplicate operations

4

Starting a new program
main(int argc, char **argv)
{

char *myName = argv[1];
char *progName = argv[2];

int cpid = fork();
if (cpid == 0) {

printf(“The child of %s is %d\n”, myName, getpid());
execlp(“/bin/ls”, // executable name

“ls”, NULL); // null terminated argv
printf(“OH NO. THEY LIED TO ME!!!\n”);

} else {
printf(“My child is %d\n”, cpid);
exit(0);

}
}

Process Termination
• Process executes last statement and OS decides(exit)

– Output data from child to parent (via wait)
– Process’ resources are deallocated by operating system

• Parent may terminate execution of child process (abort)
– Child has exceeded allocated resources
– Task assigned to child is no longer required
– If parent is exiting

• Some OSes don’t allow child to continue if parent terminates
– All children terminated - cascading termination

ProcExp Demo
• Windows process hierarchy
• explorer.exe and the system idle process
• Windows base priority mechanism

– 0, 4, 8, 13, 24
– What is procexp’s priority?

• Creating a new process
• Terminating a process

