Processes

Announcements

Why Processes? Simplicity + Speed
« Hundreds of things going on in the system

nfsd
macs > lIs

or Ipr

« How to make things simple?
— Separate each in an isolated process
— Decomposition
* How to speed-up?
— Overlap I/0 bursts of one process with CPU bursts of another

emacs

nf www

What is a process?

« The unit of execution
¢ The unit of scheduling
* Thread of execution + address space

* Is a program in execution
— Sequential, instruction-at-a-time execution of a program.

The same as “job” or “task” or “sequential process”

What is a program?

A program consists of:
— Code: machine instructions
— Data: variables stored and manipulated in memory
« initialized variables (globals)
« dynamically allocated variables (malloc, new)
« stack variables (C automatic variables, function arguments)
DLLs: libraries that were not compiled or linked with the program
« containing code & data, possibly shared with other programs
mapped files: memory segments containing variables (mmap())
« used frequently in database programs

Preparing a Program

compiler/
> @) <[] = ()

source .o files ﬁ
file e
static libraries

Executable file

Initialized data (must follow standard format,
=> such as ELF on Linux,
BSS Microsoft PE on Windows)
Symbol table

Line numbers

Ext. refs

Running a program

« OS creates a “process” and allocates memory for it
¢ The loader:
— reads and interprets the executable file
— sets process’s memory to contain code & data from executable
— pushes “argc”, “argv”, “envp” on the stack
— sets the CPU registers properly & calls “__start()” [Part of CRTO]
* Program start running at __start(), which calls main()
— we say “process” is running, and no longer think of “program”
* When main() returns, CRTO calls “exit()"
— destroys the process and returns all resources

ProceSS I= Program mapped segments

Program is passive
« Code + data

Stack
Initialized data Process is running program T
« stack, regs, program counter
BSS
Symbol table i
: Example: Fean
Line numbers We both run IE:

Ext. refs - Same program BSS

Executable - Separate processes

Initialized data

Process
e Space-

Process States

* Many processes in system, only one on CPU

« “Execution State” of a process:
— Indicates what it is doing
— Basically 3 states:
+ Ready: waiting to be assigned to the CPU
+ Running: executing instructions on the CPU
« Waiting: waiting for an event, e.g. /0O completion

* Process moves across different states

Process State Transitions

interrupt

Processes hop across states as a result of:

« Actions they perform, e.g. system calls

« Actions performed by OS, e.g. rescheduling
« External actions, e.g. /0

Process Data Structures

« OS represents a process using a PCB
— Process Control Block
— Has all the details of a process

Process Id Security Credentials
Process State Username of owner
General Purpose Registers Queue Pointers
Stack Pointer Signal Masks
Program Counter Memory Management
Accounting Info

Context Switch

« For a running process

— Allregisters are loaded in CPU and modified

« E.g. Program Counter, Stack Pointer, General Purpose Registers

* When process relinquishes the CPU, the OS

— Saves register values to the PCB of that process
« To execute another process, the OS

— Loads register values from PCB of that process
= Context Switch

— Process of switching CPU from one process to another

— Very machine dependent for types of registers

Details of Context Switching

* Very tricky to implement
— OS must save state without changing state
— Should run without touching any registers
« CISC: single instruction saves all state
« RISC: reserve registers for kernel
— Orway to save a register and then continue
« Overheads: CPU is idle during a context switch
— Explicit:
« direct cost of loading/storing registers to/from main memory
— Implicit:
« Opportunity cost of flushing useful caches (cache, TLB, etc.)
« Wait for pipeline to drain in pipelined processors

How to create a process?

« Double click on a icon?

« After boot OS starts the first process

— E.g. sched for Solaris, ntoskrnel.exe for XP
« The first process creates other processes:

— the creator is called the parent process

— the created is called the child process

— the parent/child relationships is expressed by a process tree
« For example, in UNIX the second process is called init

— it creates all the gettys (login processes) and daemons
— it should never die

— it controls the system configuration (#processes, priorities...)
« Explorer.exe in Windows for graphical interface

Processes Under UNIX

* Fork() system call is only way to create a new process
« int fork() does many things at once:
— creates a new address space (called the child)
— copies the parent's address space into the child’s
— starts a new thread of control in the child’s address space
— parent and child are equivalent -- almost
« in parent, fork() returns a non-zero integer
« in child, fork() returns a zero.
« difference allows parent and child to distinguish
« int fork() returns TWICE!

Example
main(int argc, char **argv)
{
char *myName = argv[1];
int cpid = fork(Q);
if (cpid == 0) {
printf(“The child of %s is %d\n”, myName, getpid());
exit(0);
} else {
printf(“My child is %d\n”, cpid);
exit(0);
3
3

What does this program print?

Bizarre But Real

lace:tmp<15> cc a.c
lace:tmp<16> _/a.out foobar
The child of foobar is 23874
My child is 23874

Parent

fork() Child

retsysl

v0=23874 v0=0|
Operating
System

Fork is half the story

* Fork() gets us a new address space,
— but parent and child share EVERYTHING
* memory, operating system state

« int exec(char *programName) completes the picture
— throws away the contents of the calling address space
— replaces it with the program named by programName
— starts executing at header.startPC
— Does not return

¢ Pros: Clean, simple
« Con: duplicate operations

Starting a new program

main(int argc, char **argv)

{
char *myName = argv[1];
char *progName = argv[2];
int cpid = forkQ);
if (cpid == 0) {
printf(“The child of %s is %d\n”, myName, getpid())
execlp(*“/bin/ls”, // executable name
“Is”, NULL); // null terminated argv
printf(“OH NO. THEY LIED TO ME!!I\n");
} else {
printf(“My child is %d\n”, cpid);
exit(0);
}
¥

Process Termination

* Process executes last statement and OS decides(exit)
— Output data from child to parent (via wait)
— Process’ resources are deallocated by operating system
« Parent may terminate execution of child process (abort)
— Child has exceeded allocated resources
— Task assigned to child is no longer required
— If parent is exiting
* Some OSes don't allow child to continue if parent terminates
— All children terminated - cascading termination

ProcExp Demo

« Windows process hierarchy
« explorer.exe and the system idle process
* Windows base priority mechanism
- 0,4,8,13,24
— What is procexp’s priority?
» Creating a new process
« Terminating a process

