Architectural Support for
Operating Systems

Announcements

This Lectures
1/0 subsystem and device drivers
Interrupts and traps
Protection, system calls and operating mode
OS structure

What happens when you boot a computer?

Computer System Architecture
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I/O operations

1/0 devices and the CPU can execute concurrently.

1/0 is moving data between device & controller’s buffer
— CPU moves data between controller's buffer & main memory

Each device controller is in charge of certain device type.

— May be more than one device per controller
+ SCSI can manage up to 7 devices
— Each device controller has local buffer, special registers
A device driver for every device controller
— Knows details of the controller
— Presents a uniform interface to the rest of OS
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Accessing 1/0 Devices
*« Memory Mapped 1/0

— 1/0 devices appear as regular memory to CPU

— Regular loads/stores used for accessing device

— This is more commonly used Aok PR30 VL Mt Comvertion et L

* Programmed I/O
— Also called I/0O mapped I/0
— CPU has separate bus for I/O devices |
— Special instructions are required

* Which is better?




Building a Keyboard Controller

Mesh detects which key is pressed

Building a Keyboard Controller

Encoders convert lines to binary

Building a Keyboard Controller

Latch

Latch stores encoding of pressed key

Building a Keyboard Controller

Building a Keyboard Controller

Latch

A simple functional keyboard!

What is the problem?
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Interrupts

* Mechanism required for device to interrupt the CPU
— Alternatively, CPU could poll. But this can be inefficient

« Implementing interrupts
— Aline to interrupt CPU
— Set of lines to specify priority
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Handling Multiple Devices

 Interrupt controller
— OR all interrupt lines

— Highest priority passed to CPU

I F m Priority
— Can remap priority levels Selector

How does I/0O work?

Device driver loads controller registers appropriately
Controller examines registers, executes 1/0
Controller signals I/O completion to device driver

— Using interrupts

High overhead for moving bulk data (i.e. disk 1/O)

Do Examples

* Windows device drivers:
— Network and PCI Bus
* IRQ, /0 Range, and Memory Range
— System Timer, Numeric Processor
* IRQ and I/O Range only
— Speaker
« 1/0 Range only
— Disk and Keyboard
« Nothing! (But they have other ways to interrupt.)
— DMA is special

Direct Memory Access (DMA)

Transfer data directly between device and memory
— No CPU intervention

Device controller transfers blocks of data
Interrupts when block transfer completed

— As compared to when byte is completed

Very useful for high-speed 1/0 devices

Example 1/0

Instruction execution cycle
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Interrupts

Notification from interface that device needs servicing

— Hardware: sends trigger on bus

— Software: uses a system call

Steps followed on receiving an interrupt:

— Stop kernel execution

— Save machine context at interrupted instruction

— Commonly, incoming interrupts are disabled

— Transfer execution to Interrupt Service Routine (ISR)
+ Mapping done using the Interrupt Vector (faster)

— After ISR, restore kernel state and resume execution

« Most operating systems are interrupt-driven
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Traps and Exceptions

« Software generated interrupt
— Exception: user program acts silly
« Caused by an error (div by 0, or memory access violation)
« Just a performance optimization
— Trap: user program requires OS service
« Caused by system calls
« Handled similar to hardware interrupts:
— Stops executing the process
— Calls handler subroutine
— Restores state after servicing the trap

Why Protection?

« Application programs could:
— Start scribbling into memory
— Get into infinite loops
¢ Other users could be:
— Gluttonous
— EBvil
— Or just too numerous
« Correct operation of system should be guaranteed

= A protection mechanism

Preventing Runaway Programs

¢ Also how to prevent against infinite loops
— Set a timer to generate an interrupt in a given time
— Before transferring to user, OS loads timer with time to interrupt
— Operating system decrements counter until it reaches 0
— The program is then interrupted and OS regains control.
* Ensures OS gets control of CPU
— When erroneous programs get into infinite loop
— Programs purposely continue to execute past time limit
e Setting this timer value is a privileged operation
— Can only be done by OS

Protecting Memory

* Protect program from accessing other program’s data
* Protect the OS from user programs
* Simplest scheme is base and limit registers:

memory

Prog B Loaded by OS before
{@l starting program

Prog C

* Virtual memory and segmentation are similar




Protected Instructions

Also called privileged instructions. Some examples:

¢ Direct user access to some hardware resources
— Direct access to I/0 devices like disks, printers, etc.

¢ Instructions that manipulate memory management state
— page table pointers, TLB load, etc.

¢ Setting of special mode bits

¢ Halt instruction

Needed for:
¢ Abstraction/ease of use and protection

Dual-Mode Operation

« Allows OS to protect itself and other system components
— User mode and kernel mode
* OSruns in kernel mode, user programs in user mode
— OS is god, the applications are peasants
— Privileged instructions only executable in kernel mode
* Mode bit provided by hardware
— Can distinguish if system is running user code or kernel code
— System call changes mode to kernel
— Return from call using RTI resets it to user
* How do user programs do something privileged?

Crossing Protection Boundaries

* User calls OS procedure for “privileged” operations

« Calling a kernel mode service from user mode program:
— Using System Calls
— System Calls switches execution to kernel mode

User Mode
User process }——{ System Call ‘ Mone it L
T
Trap Kernel Mode Return
Mode bit = 0 Mode bit =0 Mode bit = 1

\

‘Save Caller's stateHExecute system caIIH Restore state ‘

Types of System Calls

 Process control

* File management

» Device management
Information maintenance
« Communications

System Calls

« Programming interface to services provided by the OS
« Typically written in a high-level language (C or C++)
« Mostly accessed by programs using APIs
¢ Three most common APlIs:
— Win32 API for Windows
— POSIX API for POSIX-based systems (UNIX, Linux, Mac OS X)
— Java API for the Java virtual machine (JVM)

* Why use APIs rather than system calls?
— Easier to use

Why APIs?

System call sequence to copy contents of one file to another
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Reducing System Call Overhead

* Problem: The user-kernel mode distinction poses a
performance barrier

« Crossing this hardware barrier is costly.
« System calls take 10x-1000x more time than a procedure call
¢ Solution: Perform some system functionality in user mode
« Libraries (DLLs) can reduce number of system calls,
— by caching results (getpid) or
— buffering ops (open/read/write vs. fopen/fread/ fwrite).

Real System Have Holes

OSes protect some things, ignore others

— Many will blow up when you run: int main() {

— Usual response: freeze “l"h\(l)é“rk()_
— To unfreeze, reboot '

}
— If not, also try touching memory }

Duality: Solve problems technically and socially
— Technical: have process/memory quotas

— Social: yell at idiots that crash machines

— Similar to security: encryption and laws

Fixed Pie, Infinite Demands

.

How to make the pie go further?
— Resource usage is bursty! So give to others when idle.

— Eg. When waiting for a webpage! Give CPU to idle process.

« 1000 years old idea: instead of one classroom per student,
restaurant per customer, etc.

BUT, more utilization = more complexity.
— How to manage? (1 road per car vs. freeway)

— Abstraction (different lanes), Synchronization (traffic lights),
increase capacity (build more roads)

But more utilization = more contention.
— What to do when illusion breaks?

— Refuse service (busy signal), give up (VM swapping), backoff
and retry (Ethernet), break (freeway)

Operating System Structure

¢ An OS is just a program:

— It has main() function that gets called only once (during boot)

— Like any program, it consumes resources (such as memory)

— Can do silly things (like generating an exception), etc.
But it is a very strange program:

— “Entered” from different locations in response to external events
— Does not have a single thread of control

« can be invoked simultaneously by two different events
« e.g. sys call & an interrupt

— ltis not supposed to terminate
— It can execute any instruction in the machine

Fixed Pie, Infinite Demand

* How to divide pie?
— User? Yeah, right.
— Usually treat all apps same, then monitor and re-apportion
* What's the best piece to take away?
— OSes are the last pure bastion of fascism
— Use system feedback rather than blind fairness
« How to handle pigs?
— Quotas (leland), ejection (swapping), buy more stuff (microsoft
products), break (ethernet, most real systems), laws (freeway)

— A real problem: hard to distinguish responsible busy programs
from selfish, stupid pigs.

OS Control Flow

. From boot
main()

’ Initia!ization‘ ’ Interrupt ‘
Idle
Loop

Operating System Modules




Operating System Structure

« Simple Structure: MS-DOS
— written to provide the most functionality in the least space
« Disadvantages:  ———
— Not modular T i
— Inefficient -
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General OS Structure
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Monolithic Structure

Layered Structure

« OS divided into number of layers
— bottom layer (layer 0), is the hardware
— highest (layer N) is the user interface
— each uses functions and services of only lower-level layers
« Advantages:
— Simplicity of construction
— Ease of debugging
— Extensible
« Disadvantages:
— Defining the layers
— Each layer adds overhead

Layered Structure
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Microkernel Structure

* Moves as much from kernel into “user” space
¢ User modules communicate using message passing
* Benefits:
— Easier to extend a microkernel
— Easier to port the operating system to new architectures
— More reliable (less code is running in kernel mode)
— More secure
— Example: Mach, QNX
* Detriments:
— Performance overhead of user to kernel space communication
— Example: Evolution of Windows NT to Windows XP

Microkernel Structure

App Memory App
Manager
Process Security
Manager Module
Network
Support

Basic Message Passing Support ‘
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Modules Virtual Machines

* Most modern OSs implement kernel modules

_ Uses object-oriented approach « Abstract single machine h/w as multiple execution envs
— Each core component is separate — Abstraction has identical interface as underlying h/w
— Each talks to the others over known interfaces ¢ Useful
— Each is loadable as needed within the kernel — System building processes
« Overall, similar to layers but with more flexible — Protection
« Examples: Solaris, Linux, MAC OS X » Cons processes processe
— — implementation '] 1l 1l
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Booting a System Operating System in Action
¢ CPU loads boot program from ROM « OS runs user programs, if available, else enters idle loop
— BIOS in PCs

« Inthe idle loop:

* Boot program: — OS executes an infinite loop (UNIX)

— Examines/checks machine configuration

« number of CPUs, memory, number/type of h/w devices, etc.
— Small devices have entire OS on ROM (firmware)

* Why not do it for large OSes?
— Read boot block from disk and execute

— OS performs some system management & profiling

— OS halts the processor and enter in low-power mode (notebooks)

— OS computes some function (DEC’s VMS on VAX computed Pi)
* OS wakes up on:

— interrupts from hardware devices

— traps from user programs

— exceptions from user programs

« Find OS kernel, load it in memory, and execute it
* Now system is running!

UNIX structure Windows Structure

User Programs

UNIX Commands

Figure 114 Gonerul UNIX Architecture

Figure 215 Traditional UNIX Kernel |BACHSS]

Figure 213 Windows 2000 Architecture [SOLO0A|




Modern UNIX Systems
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Figure 216 Modern UNIX Kernel [VAHAYS|
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