Architectural Support for
Operating Systems

Announcements

This Lectures
1/0 subsystem and device drivers
Interrupts and traps
Protection, system calls and operating mode
OS structure

What happens when you boot a computer?

Computer System Architecture

mouse keyboard printar monitor

I/O operations

1/0 devices and the CPU can execute concurrently.

1/0 is moving data between device & controller’s buffer
— CPU moves data between controller's buffer & main memory

Each device controller is in charge of certain device type.

— May be more than one device per controller
+ SCSI can manage up to 7 devices
— Each device controller has local buffer, special registers
A device driver for every device controller
— Knows details of the controller
— Presents a uniform interface to the rest of OS

disk graphics
cPU ‘ [controller ‘ USE controller ‘ adapter
memory
Accessing 1/0 Devices
*« Memory Mapped 1/0

— 1/0 devices appear as regular memory to CPU

— Regular loads/stores used for accessing device

— This is more commonly used Aok PR30 VL Mt Comvertion et L

* Programmed I/O
— Also called I/0O mapped I/0
— CPU has separate bus for I/O devices |
— Special instructions are required

* Which is better?

Building a Keyboard Controller

Mesh detects which key is pressed

Building a Keyboard Controller

Encoders convert lines to binary

Building a Keyboard Controller

Latch

Latch stores encoding of pressed key

Building a Keyboard Controller

Building a Keyboard Controller

Latch

A simple functional keyboard!

What is the problem?

Data
Latch

f - .i
15V —000-]

Clock

Circuit to read Latch data RIW

Address
Interrupts

* Mechanism required for device to interrupt the CPU
— Alternatively, CPU could poll. But this can be inefficient

« Implementing interrupts
— Aline to interrupt CPU
— Set of lines to specify priority

1=
2
5]
k]
=

Interrupt Priority

‘ Device

(aish)
~

Computer System Architectureg _ %sa

= = |

[cache | ' \gl*‘ﬁ\

| | [y Coemey | [sosteosome
] = | PCibus = 1

IDE disk controller Spateid] Leis

interface ‘ eyboaid

G G (I E——expansion bus——!
@ v . =
) e |
disk| idisk) parallel serial
o & port port ‘

Handling Multiple Devices

 Interrupt controller
— OR all interrupt lines

— Highest priority passed to CPU

I F m Priority
— Can remap priority levels Selector

How does I/0O work?

Device driver loads controller registers appropriately
Controller examines registers, executes 1/0
Controller signals I/O completion to device driver

— Using interrupts

High overhead for moving bulk data (i.e. disk 1/O)

Do Examples

* Windows device drivers:
— Network and PCI Bus
* IRQ, /0 Range, and Memory Range
— System Timer, Numeric Processor
* IRQ and I/O Range only
— Speaker
« 1/0 Range only
— Disk and Keyboard
« Nothing! (But they have other ways to interrupt.)
— DMA is special

Direct Memory Access (DMA)

Transfer data directly between device and memory
— No CPU intervention

Device controller transfers blocks of data
Interrupts when block transfer completed

— As compared to when byte is completed

Very useful for high-speed 1/0 devices

Example 1/0

Instruction execution cycle

Data movement Memory

Instructions
and
Data

1= 1sanbay O/
— 1dnua|
— eleq —>|

Disk Device Driver
and
Disk Controller

Perform I/O

Read Data

Interrupts

Notification from interface that device needs servicing

— Hardware: sends trigger on bus

— Software: uses a system call

Steps followed on receiving an interrupt:

— Stop kernel execution

— Save machine context at interrupted instruction

— Commonly, incoming interrupts are disabled

— Transfer execution to Interrupt Service Routine (ISR)
+ Mapping done using the Interrupt Vector (faster)

— After ISR, restore kernel state and resume execution

« Most operating systems are interrupt-driven

Interrupt Timeline

CPU user
process |
executing L I ,_
10 intarrupt | —
processing ‘
] idle s = Ak =
Kavice) | |
transfarring |
o transfer o transfer
raquast dona requast dona

Traps and Exceptions

« Software generated interrupt
— Exception: user program acts silly
« Caused by an error (div by 0, or memory access violation)
« Just a performance optimization
— Trap: user program requires OS service
« Caused by system calls
« Handled similar to hardware interrupts:
— Stops executing the process
— Calls handler subroutine
— Restores state after servicing the trap

Why Protection?

« Application programs could:
— Start scribbling into memory
— Get into infinite loops
¢ Other users could be:
— Gluttonous
— EBvil
— Or just too numerous
« Correct operation of system should be guaranteed

= A protection mechanism

Preventing Runaway Programs

¢ Also how to prevent against infinite loops
— Set a timer to generate an interrupt in a given time
— Before transferring to user, OS loads timer with time to interrupt
— Operating system decrements counter until it reaches 0
— The program is then interrupted and OS regains control.
* Ensures OS gets control of CPU
— When erroneous programs get into infinite loop
— Programs purposely continue to execute past time limit
e Setting this timer value is a privileged operation
— Can only be done by OS

Protecting Memory

* Protect program from accessing other program’s data
* Protect the OS from user programs
* Simplest scheme is base and limit registers:

memory

Prog B Loaded by OS before
{@l starting program

Prog C

* Virtual memory and segmentation are similar

Protected Instructions

Also called privileged instructions. Some examples:

¢ Direct user access to some hardware resources
— Direct access to I/0 devices like disks, printers, etc.

¢ Instructions that manipulate memory management state
— page table pointers, TLB load, etc.

¢ Setting of special mode bits

¢ Halt instruction

Needed for:
¢ Abstraction/ease of use and protection

Dual-Mode Operation

« Allows OS to protect itself and other system components
— User mode and kernel mode
* OSruns in kernel mode, user programs in user mode
— OS is god, the applications are peasants
— Privileged instructions only executable in kernel mode
* Mode bit provided by hardware
— Can distinguish if system is running user code or kernel code
— System call changes mode to kernel
— Return from call using RTI resets it to user
* How do user programs do something privileged?

Crossing Protection Boundaries

* User calls OS procedure for “privileged” operations

« Calling a kernel mode service from user mode program:
— Using System Calls
— System Calls switches execution to kernel mode

User Mode
User process }——{ System Call ‘ Mone it L
T
Trap Kernel Mode Return
Mode bit = 0 Mode bit =0 Mode bit = 1

\

‘Save Caller's stateHExecute system caIIH Restore state ‘

Types of System Calls

 Process control

* File management

» Device management
Information maintenance
« Communications

System Calls

« Programming interface to services provided by the OS
« Typically written in a high-level language (C or C++)
« Mostly accessed by programs using APIs
¢ Three most common APlIs:
— Win32 API for Windows
— POSIX API for POSIX-based systems (UNIX, Linux, Mac OS X)
— Java API for the Java virtual machine (JVM)

* Why use APIs rather than system calls?
— Easier to use

Why APIs?

System call sequence to copy contents of one file to another

[cossmation ta
L

1

roturn vaos Standard API

Reducing System Call Overhead

* Problem: The user-kernel mode distinction poses a
performance barrier

« Crossing this hardware barrier is costly.
« System calls take 10x-1000x more time than a procedure call
¢ Solution: Perform some system functionality in user mode
« Libraries (DLLs) can reduce number of system calls,
— by caching results (getpid) or
— buffering ops (open/read/write vs. fopen/fread/ fwrite).

Real System Have Holes

OSes protect some things, ignore others

— Many will blow up when you run: int main() {

— Usual response: freeze “l"h\(l)é“rk()_
— To unfreeze, reboot '

}
— If not, also try touching memory }

Duality: Solve problems technically and socially
— Technical: have process/memory quotas

— Social: yell at idiots that crash machines

— Similar to security: encryption and laws

Fixed Pie, Infinite Demands

.

How to make the pie go further?
— Resource usage is bursty! So give to others when idle.

— Eg. When waiting for a webpage! Give CPU to idle process.

« 1000 years old idea: instead of one classroom per student,
restaurant per customer, etc.

BUT, more utilization = more complexity.
— How to manage? (1 road per car vs. freeway)

— Abstraction (different lanes), Synchronization (traffic lights),
increase capacity (build more roads)

But more utilization = more contention.
— What to do when illusion breaks?

— Refuse service (busy signal), give up (VM swapping), backoff
and retry (Ethernet), break (freeway)

Operating System Structure

¢ An OS is just a program:

— It has main() function that gets called only once (during boot)

— Like any program, it consumes resources (such as memory)

— Can do silly things (like generating an exception), etc.
But it is a very strange program:

— “Entered” from different locations in response to external events
— Does not have a single thread of control

« can be invoked simultaneously by two different events
« e.g. sys call & an interrupt

— ltis not supposed to terminate
— It can execute any instruction in the machine

Fixed Pie, Infinite Demand

* How to divide pie?
— User? Yeah, right.
— Usually treat all apps same, then monitor and re-apportion
* What's the best piece to take away?
— OSes are the last pure bastion of fascism
— Use system feedback rather than blind fairness
« How to handle pigs?
— Quotas (leland), ejection (swapping), buy more stuff (microsoft
products), break (ethernet, most real systems), laws (freeway)

— A real problem: hard to distinguish responsible busy programs
from selfish, stupid pigs.

OS Control Flow

. From boot
main()

’ Initia!ization‘ ’ Interrupt ‘
Idle
Loop

Operating System Modules

Operating System Structure

« Simple Structure: MS-DOS
— written to provide the most functionality in the least space
« Disadvantages: ———
— Not modular T i
— Inefficient -

I
AR

resident system program }

F’L
|M$-DDS device driwarsb

— Low security

I ROM BIOS device drivers u

General OS Structure

App App App
API

Memory Process || Network
Manager | |pmanager Support

Security Service
Module Module

Extengions & Device Interrupt | Boot &
Add'l flevice drivers Drivers handlers | init

Monolithic Structure

Layered Structure

« OS divided into number of layers
— bottom layer (layer 0), is the hardware
— highest (layer N) is the user interface
— each uses functions and services of only lower-level layers
« Advantages:
— Simplicity of construction
— Ease of debugging
— Extensible
« Disadvantages:
— Defining the layers
— Each layer adds overhead

Layered Structure

-
API

Memory | |Process | | Network <S)bjectrt
Manager| [Manager Support| | SUpPpO!

M/C dependent basic implementations

Hardware Adaptation Layer (HAL)

Add'l gevice drivers

- - Boot &
Extengions & Device || Interrupt ‘ init
Drivi S

Microkernel Structure

* Moves as much from kernel into “user” space
¢ User modules communicate using message passing
* Benefits:
— Easier to extend a microkernel
— Easier to port the operating system to new architectures
— More reliable (less code is running in kernel mode)
— More secure
— Example: Mach, QNX
* Detriments:
— Performance overhead of user to kernel space communication
— Example: Evolution of Windows NT to Windows XP

Microkernel Structure

App Memory App
Manager
Process Security
Manager Module
Network
Support

Basic Message Passing Support ‘

|

Extengions & Device Interrupt Boot &
Add’l glevice drivers Drivers handlers | init

Modules Virtual Machines

* Most modern OSs implement kernel modules

_ Uses object-oriented approach « Abstract single machine h/w as multiple execution envs
— Each core component is separate — Abstraction has identical interface as underlying h/w
— Each talks to the others over known interfaces ¢ Useful
— Each is loadable as needed within the kernel — System building processes
« Overall, similar to layers but with more flexible — Protection
« Examples: Solaris, Linux, MAC OS X » Cons processes processe
— — implementation '] 1l 1l
(...“"’_'f:m"’\ \c.:mn > @& w..m) » Examples | . kiw ot |
s \/ — VMWare, JVM kst e
wra— { r.‘nu I'B hardwate Amelaina’xaan
P th b‘m P hardwane
1“":,,‘3“‘,‘,",‘,?"/; i u—mms/ . .
/s-t;ma“\ /.nmum ™y
N moduls S lomats
Booting a System Operating System in Action
¢ CPU loads boot program from ROM « OS runs user programs, if available, else enters idle loop
— BIOS in PCs

« Inthe idle loop:

* Boot program: — OS executes an infinite loop (UNIX)

— Examines/checks machine configuration

« number of CPUs, memory, number/type of h/w devices, etc.
— Small devices have entire OS on ROM (firmware)

* Why not do it for large OSes?
— Read boot block from disk and execute

— OS performs some system management & profiling

— OS halts the processor and enter in low-power mode (notebooks)

— OS computes some function (DEC’s VMS on VAX computed Pi)
* OS wakes up on:

— interrupts from hardware devices

— traps from user programs

— exceptions from user programs

« Find OS kernel, load it in memory, and execute it
* Now system is running!

UNIX structure Windows Structure

User Programs

UNIX Commands

Figure 114 Gonerul UNIX Architecture

Figure 215 Traditional UNIX Kernel |BACHSS]

Figure 213 Windows 2000 Architecture [SOLO0A|

Modern UNIX Systems

e

Figure 216 Modern UNIX Kernel [VAHAYS|

MAC OS X

kemnel

application envirenments
and common sarvices

VMWare Structure

guost oparating qguest operating guas! operating
systom systom systam
(frea BSDY) (Windors NT) (Windows XP)
virtuad CPU virtual CPU virlual CPU
wirtual memary wirtual memory virtual memory
virtual davices virtual devices wvirtual devices
virtualization Layer
host operating system
{Linsx)
hasdware

