
1

Architectural Support for
Operating Systems

Announcements

This Lectures
• I/O subsystem and device drivers

• Interrupts and traps

• Protection, system calls and operating mode

• OS structure

• What happens when you boot a computer?

Computer System Architecture

I/O operations
• I/O devices and the CPU can execute concurrently.
• I/O is moving data between device & controller’s buffer

– CPU moves data between controller’s buffer & main memory

• Each device controller is in charge of certain device type.
– May be more than one device per controller

• SCSI can manage up to 7 devices

– Each device controller has local buffer, special registers

• A device driver for every device controller
– Knows details of the controller
– Presents a uniform interface to the rest of OS

Accessing I/O Devices
• Memory Mapped I/O

– I/O devices appear as regular memory to CPU
– Regular loads/stores used for accessing device
– This is more commonly used

• Programmed I/O
– Also called I/O mapped I/O
– CPU has separate bus for I/O devices
– Special instructions are required

• Which is better?

2

Building a Keyboard Controller

Mesh detects which key is pressed

Building a Keyboard Controller

Encoders convert lines to binary

Encoder

En
co

de
r

Building a Keyboard Controller

Latch stores encoding of pressed key

Encoder

En
co

de
r

Latch

CLK

Building a Keyboard Controller

Circuit to read Latch data

Encoder

En
co

de
r

Latch

CLK

CPU

Data

Address

R/W
Clock

Building a Keyboard Controller

A simple functional keyboard!

Encoder

En
co

de
r

Latch

CLK

CPU

Data

Address

R/W
Clock

Bu
ffe

r

DEMUX
What is the problem?

Interrupts
• Mechanism required for device to interrupt the CPU

– Alternatively, CPU could poll. But this can be inefficient

• Implementing interrupts
– A line to interrupt CPU
– Set of lines to specify priority

CPU

Memory

Device

D
at

a

Ad
dr

R
/W

C
lo

ck

In
te

rr
up

t

In
te

rr
up

t P
rio

rit
y

3

Computer System Architecture Handling Multiple Devices

• Interrupt controller
– OR all interrupt lines
– Highest priority passed to CPU
– Can remap priority levels

CPU

Priority
Selector

How does I/O work?
• Device driver loads controller registers appropriately
• Controller examines registers, executes I/O
• Controller signals I/O completion to device driver

– Using interrupts

• High overhead for moving bulk data (i.e. disk I/O)

Do Examples

• Windows device drivers:
– Network and PCI Bus

• IRQ, I/O Range, and Memory Range
– System Timer, Numeric Processor

• IRQ and I/O Range only
– Speaker

• I/O Range only
– Disk and Keyboard

• Nothing! (But they have other ways to interrupt.)
– DMA is special

Direct Memory Access (DMA)
• Transfer data directly between device and memory

– No CPU intervention

• Device controller transfers blocks of data
• Interrupts when block transfer completed

– As compared to when byte is completed

• Very useful for high-speed I/O devices

Example I/O

ca
ch

e

CPU (*N)

Thread of
execution Memory

Instructions
and
Data

Instruction execution cycle

Data movement

Keyboard Device Driver
and

Keyboard Controller

I/O
 R

equest

Perform I/O

Read Data

Interrupt

D
ata

Disk Device Driver
and

Disk Controller

DMA

4

Interrupts
• Notification from interface that device needs servicing

– Hardware: sends trigger on bus
– Software: uses a system call

• Steps followed on receiving an interrupt:
– Stop kernel execution
– Save machine context at interrupted instruction
– Commonly, incoming interrupts are disabled
– Transfer execution to Interrupt Service Routine (ISR)

• Mapping done using the Interrupt Vector (faster)
– After ISR, restore kernel state and resume execution

• Most operating systems are interrupt-driven

Interrupt Timeline

Traps and Exceptions
• Software generated interrupt

– Exception: user program acts silly
• Caused by an error (div by 0, or memory access violation)
• Just a performance optimization

– Trap: user program requires OS service
• Caused by system calls

• Handled similar to hardware interrupts:
– Stops executing the process
– Calls handler subroutine
– Restores state after servicing the trap

Why Protection?
• Application programs could:

– Start scribbling into memory
– Get into infinite loops

• Other users could be:
– Gluttonous
– Evil
– Or just too numerous

• Correct operation of system should be guaranteed
⇒ A protection mechanism

Preventing Runaway Programs
• Also how to prevent against infinite loops

– Set a timer to generate an interrupt in a given time
– Before transferring to user, OS loads timer with time to interrupt
– Operating system decrements counter until it reaches 0
– The program is then interrupted and OS regains control.

• Ensures OS gets control of CPU
– When erroneous programs get into infinite loop
– Programs purposely continue to execute past time limit

• Setting this timer value is a privileged operation
– Can only be done by OS

Protecting Memory
• Protect program from accessing other program’s data
• Protect the OS from user programs
• Simplest scheme is base and limit registers:

• Virtual memory and segmentation are similar

memory

Prog A

Prog B

Prog C

Base register

Limit register
Loaded by OS before

starting program

5

Protected Instructions
Also called privileged instructions. Some examples:
• Direct user access to some hardware resources

– Direct access to I/O devices like disks, printers, etc.

• Instructions that manipulate memory management state
– page table pointers, TLB load, etc.

• Setting of special mode bits
• Halt instruction

Needed for:
• Abstraction/ease of use and protection

Dual-Mode Operation
• Allows OS to protect itself and other system components

– User mode and kernel mode

• OS runs in kernel mode, user programs in user mode
– OS is god, the applications are peasants
– Privileged instructions only executable in kernel mode

• Mode bit provided by hardware
– Can distinguish if system is running user code or kernel code
– System call changes mode to kernel
– Return from call using RTI resets it to user

• How do user programs do something privileged?

Crossing Protection Boundaries
• User calls OS procedure for “privileged” operations
• Calling a kernel mode service from user mode program:

– Using System Calls
– System Calls switches execution to kernel mode

User process System Call

Trap
Mode bit = 0

Save Caller’s state Execute system call Restore state

Return
Mode bit = 1

Resume process
User Mode

Mode bit = 1

Kernel Mode
Mode bit = 0

Types of System Calls

• Process control
• File management
• Device management
• Information maintenance
• Communications

System Calls
• Programming interface to services provided by the OS
• Typically written in a high-level language (C or C++)
• Mostly accessed by programs using APIs
• Three most common APIs:

– Win32 API for Windows
– POSIX API for POSIX-based systems (UNIX, Linux, Mac OS X)
– Java API for the Java virtual machine (JVM)

• Why use APIs rather than system calls?
– Easier to use

Why APIs?
System call sequence to copy contents of one file to another

Standard API

6

Reducing System Call Overhead
• Problem: The user-kernel mode distinction poses a

performance barrier
• Crossing this hardware barrier is costly.
• System calls take 10x-1000x more time than a procedure call

• Solution: Perform some system functionality in user mode

• Libraries (DLLs) can reduce number of system calls,
– by caching results (getpid) or
– buffering ops (open/read/write vs. fopen/fread/ fwrite).

Real System Have Holes
• OSes protect some things, ignore others

– Many will blow up when you run:
– Usual response: freeze
– To unfreeze, reboot
– If not, also try touching memory

• Duality: Solve problems technically and socially
– Technical: have process/memory quotas
– Social: yell at idiots that crash machines
– Similar to security: encryption and laws

int main() {
while (1) {

fork();
}

}

Fixed Pie, Infinite Demands
• How to make the pie go further?

– Resource usage is bursty! So give to others when idle.
– Eg. When waiting for a webpage! Give CPU to idle process.

• 1000 years old idea: instead of one classroom per student,
restaurant per customer, etc.

• BUT, more utilization ⇒ more complexity.
– How to manage? (1 road per car vs. freeway)
– Abstraction (different lanes), Synchronization (traffic lights),

increase capacity (build more roads)

• But more utilization ⇒ more contention.
– What to do when illusion breaks?
– Refuse service (busy signal), give up (VM swapping), backoff

and retry (Ethernet), break (freeway)

Fixed Pie, Infinite Demand
• How to divide pie?

– User? Yeah, right.
– Usually treat all apps same, then monitor and re-apportion

• What’s the best piece to take away?
– OSes are the last pure bastion of fascism
– Use system feedback rather than blind fairness

• How to handle pigs?
– Quotas (leland), ejection (swapping), buy more stuff (microsoft

products), break (ethernet, most real systems), laws (freeway)
– A real problem: hard to distinguish responsible busy programs

from selfish, stupid pigs.

Operating System Structure
• An OS is just a program:

– It has main() function that gets called only once (during boot)
– Like any program, it consumes resources (such as memory)
– Can do silly things (like generating an exception), etc.

• But it is a very strange program:
– “Entered” from different locations in response to external events
– Does not have a single thread of control

• can be invoked simultaneously by two different events
• e.g. sys call & an interrupt

– It is not supposed to terminate
– It can execute any instruction in the machine

OS Control Flow

Operating System Modules

Idle
Loop

From boot

Initialization

Invoke User
Program

Interrupt System call
main()

Exception

7

Operating System Structure
• Simple Structure: MS-DOS

– written to provide the most functionality in the least space

• Disadvantages:
– Not modular
– Inefficient
– Low security

General OS Structure

Device
Drivers

Extensions &
Add’l device drivers

Interrupt
handlers

File
Systems

Memory
Manager

Process
Manager

Security
Module

API

App App

Network
Support

Service
Module

Boot &
init

App

Monolithic Structure

Layered Structure
• OS divided into number of layers

– bottom layer (layer 0), is the hardware
– highest (layer N) is the user interface
– each uses functions and services of only lower-level layers

• Advantages:
– Simplicity of construction
– Ease of debugging
– Extensible

• Disadvantages:
– Defining the layers
– Each layer adds overhead

Layered Structure

Device
Drivers

Extensions &
Add’l device drivers

Interrupt
handlers

File
Systems

Memory
Manager

Process
Manager

API

App App

Network
Support

Boot &
init

App

Object
Support

M/C dependent basic implementations

Hardware Adaptation Layer (HAL)

Microkernel Structure
• Moves as much from kernel into “user” space
• User modules communicate using message passing
• Benefits:

– Easier to extend a microkernel
– Easier to port the operating system to new architectures
– More reliable (less code is running in kernel mode)
– More secure
– Example: Mach, QNX

• Detriments:
– Performance overhead of user to kernel space communication
– Example: Evolution of Windows NT to Windows XP

Microkernel Structure

Device
Drivers

Extensions &
Add’l device drivers

Interrupt
handlers

File
Systems

Memory
Manager

Process
Manager

Security
Module

App

Network
Support

Boot &
init

App

Basic Message Passing Support

8

Modules
• Most modern OSs implement kernel modules

– Uses object-oriented approach
– Each core component is separate
– Each talks to the others over known interfaces
– Each is loadable as needed within the kernel

• Overall, similar to layers but with more flexible
• Examples: Solaris, Linux, MAC OS X

Virtual Machines
• Abstract single machine h/w as multiple execution envs

– Abstraction has identical interface as underlying h/w

• Useful
– System building
– Protection

• Cons
– implementation

• Examples
– VMWare, JVM

Booting a System
• CPU loads boot program from ROM

– BIOS in PCs

• Boot program:
– Examines/checks machine configuration

• number of CPUs, memory, number/type of h/w devices, etc.
– Small devices have entire OS on ROM (firmware)

• Why not do it for large OSes?
– Read boot block from disk and execute

• Find OS kernel, load it in memory, and execute it
• Now system is running!

Operating System in Action
• OS runs user programs, if available, else enters idle loop
• In the idle loop:

– OS executes an infinite loop (UNIX)
– OS performs some system management & profiling
– OS halts the processor and enter in low-power mode (notebooks)
– OS computes some function (DEC’s VMS on VAX computed Pi)

• OS wakes up on:
– interrupts from hardware devices
– traps from user programs
– exceptions from user programs

UNIX structure Windows Structure

9

Modern UNIX Systems MAC OS X

VMWare Structure

