
1

CS 414/415
Systems Programming

and
Operating Systems

Spring 2005

Instructor: Paul Francis

Administrative

• Instructor: Paul Francis, 4108 Upson
• 414 TAs: Joy Zhang, Others…
• 415 TA: Saikat Guha
• Lectures:

– CS 414: T, R: 10:10 – 11:25 AM
– CS 415: M: 3:35 – 4:25 PM

• www.cs.cornell.edu/courses/cs414/2005fa/

Adminstration
• Mailing list for student discussions:

– francis-class-l at cs.cornell.edu
– http://lists.cs.cornell.edu/mailman/listinfo/francis-class-l

• Class announcements:
– Via CMS mail, and posts on course website

• Required Textbook:
– Operating Systems Concepts: 7th Edition

Silberschatz, Galvin and Gagne
– Older editions ok, but you must figure out

which sections to read

CS 414: Overview
• Prerequisite:

– Mastery of CS 314 material

• CS 414: Systems Programming and
Operating Systems
– How OS’s work, and how to program over

them
– You can’t understand computers and

programming withou understanding this!
• That’s why we require it! :)

CS 414: Your load
• Reading for every lecture

– Do this before lecture!

• Lectures
• Homework (weekly)
• Small programming tasks

– Designed to emphasize performance trade-
offs in OS’s

– (A series of unfortunate events)

CS 414: Evaluation
• Two prelims and a final exam (~60%)
• A few pop quizzes on homework (~20%)

– In lieu of grading!
– Pop quiz will be a minor variation on homework

• Small programming tasks (~20%)
– Style counts!!!!

• Intangible (up to 10%)

• (these are rough percentages and subject to
tweaks)

2

CS 415: Overview
• CS 415: Practicum in Operating Systems

– Projects that complement course material
– Best way to learn about OSs

• This semester:
– Build various components of operating systems

• Threads, networking, file systems
• Similar to www.cs.cornell.edu/courses/cs414/2004sp/

– Work individually or in pairs
– More detail in first 415 lecture

• Enrollment in CS 415 is optional

Academic Integrity

• I encourage student discussion
• But you must write your own code

– I reserve the right to “spot check” you on code

• Homework
– I suggest that you try to do it individually
– If you have trouble, discuss with others
– After you finish, compare with others

Course Material
• Introduction, history, architectural support
• Concurrency, processes, threads
• Synchronization, monitors, semaphores
• Networking, distributed systems
• Memory Management, virtual memory
• Storage Management, I/O, filesystems
• Security
• Case studies: Windows XP, Linux

Why take this course?

• I said it already:
• You cannot write good performing

software (of any complexity) without
understanding the OS

• You cannot design or specify a system
without understanding the OS

• And you might even write an OS someday!

What is an Operating System?
• A number of definitions:

– Just google for define: Operating System

• A few of them:
– “Everything a vendor ships when you order an operating system”
– “The one program running at all times on the computer”
– “A program that manages all other programs in a computer”

• Required memory varies: less than 1 MB to a few GB

• Whatever it is, every computer has one!

Operating System: Definition
Definition

An Operating System (OS) provides a virtual machine
on top of the real hardware, whose interface is more

convenient than the raw hardware interface.

Hardware

Applications

Operating System

OS interface

Physical machine interface

Advantages
Easy to use, simpler to code, more reliable, more secure, …

You can say: “I want to write XYZ into file ABC”

3

Operating Systems Services
• Manage physical resources:

– It drives various devices
• Eg: CPU, memory, disks, networks, displays, cameras, etc

• Provide abstractions for physical resources
– Provide virtual resources and interfaces

• Eg: files, directories, users, threads, processes, etc
– Simplify programming through high-level abstractions
– Provide users with a stable environment, mask failures

• Isolate and mediate between entities
– Trusted intermediary for untrusted applications

What is in an OS?

Operating
System
Services

Interrupts, Cache, Physical Memory, Hardware Devices

Generic I/O File System

Memory Management

Process Management

Virtual MemoryNetworking

Naming

Access Control

Windowing & graphics

Windowing

Applications

OS Interface

Physical m/c Intf

Device Drivers

ShellsSystem Utils

Quake Sql Server

Logical OS Structure

Issues in OS Design
• Structure: how is an operating system organized ?
• Sharing: how are resources shared among users ?
• Naming: how are resources named by users or programs ?
• Protection: how is one user/program protected from another ?
• Security: how to authenticate, control access, secure privacy ?
• Performance: why is it so slow ?
• Reliability and fault tolerance: how do we deal with failures ?
• Extensibility: how do we add new features ?

Issues in OS Design
• Communication: how can we exchange information ?
• Concurrency: how are parallel activities created and controlled ?

• Scale, growth: what happens as demands or resources increase ?

• Persistence: how can data outlast processes that created them

• Compatibility: can we ever do anything new ?

• Distribution: accessing the world of information

• Accounting: who pays bills, and how to control resource usage

History of Operating Systems
• Initially, the OS was just a run-time library

– You linked your application with the OS,
– loaded the whole program into memory, and ran it
– How do you get it into the computer? Through the control panel!

• Simple batch systems (mid1950s – mid 1960s)
– Permanently resident OS in primary memory
– Loaded a single job from card reader, ran it, loaded next job...
– Control cards in the input file told the OS what to do
– Spooling allowed jobs to be read in advance onto tape/disk

Compute
I/O

Multiprogramming Systems
• Multiprogramming systems increased utilization

– Developed in the 1960s
– Keeps multiple runnable jobs loaded in memory
– Overlaps I/O processing of a job with computation of another
– Benefits from I/O devices that can operate asynchronously
– Requires the use of interrupts and DMA
– Optimizes for throughput at the cost of response time

Compute

I/O

Compute

I/O

4

Time Sharing Systems
Timesharing (1970s) allows interactive computer use

– Users connect to a central machine through a terminal
– User feels as if he has the entire machine
– Based on time-slicing: divides CPU among the users
– Allows active viewing, editing, debugging, executing process
– Security mechanisms needed to isolate users
– Requires memory protection hardware for isolation
– Optimizes for response time at the cost of throughput

Compute

Personal Operating Systems
• Earliest ones in the 1980s
• Computers are cheap ⇒ everyone has a computer
• Initially, the OS was a library
• Advanced features were added back

– Multiprogramming, memory protection, etc

Networked Operating Systems
• In the 90’s, the Internet pushed us back towards

shared systems
• Often PCs operate as “dumb terminals”
• Web applications

– Web mail
– Network games
– Internet commerce

• Network stacks become faster, more sophisticated
– Though in general this stayed on the main CPU

Distributed Operating Systems
• Cluster of individual machines

– Over a LAN or WAN or fast interconnect
– No shared memory or clock

• Asymmetric vs. symmetric clustering
• Sharing of distributed resources, hardware and software

– Resource utilization, high availability

• Permits some parallelism, but speedup is not the issue
• SANs, Oracle Parallel Server, Google

Parallel Operating Systems
• Multiprocessor or tightly coupled systems
• Many advantages:

– Increased throughput
– Cheaper
– More reliable

• Asymmetric vs. symmetric multiprocessing
– Master/slave vs. peer relationships

• Examples: SunOS Version 4 and Version 5

Real Time Operating Systems
• Goal: To cope with rigid time constraints
• Hard real-time

– OS guarantees that applications will meet their deadlines
– Examples: TCAS, health monitors, factory control

• Soft real-time
– OS provides prioritization, on a best-effort basis
– No deadline guarantees, but bounded delays
– Examples: most electronic appliances

• Real-time means “predictable”
• NOT fast

5

Ubiquitous Systems
• PDAs, personal computers, cellular phones, sensors
• Challenges:

– Small memory size
– Slow processor
– Different display and I/O
– Battery concerns
– Scale
– Security
– Naming

• We will look into some of these problems

Over the years
• Not that batch systems were ridiculous

– They were exactly right for the tradeoffs at the time

• The tradeoffs change

• Need to understand the fundamentals
– So you can design better systems for tomorrow’s tradeoffs

0.1<= 1>> 10# Users

160001GB (2?)128KBDRAM

100000010 Gb/s9600 b/sNet Bandwidth

800080GB (more?)10MBDisk

20000$5000$100000$/MIPS

200020001MIPS

Factor20051981

