CS 414/415
Systems Programming
and
Operating Systems

Spring 2005

Instructor: Paul Francis

Administrative

* Instructor: Paul Francis, 4108 Upson
414 TAs: Joy Zhang, Others...
e 415 TA: Saikat Guha

» Lectures:
— CS 414: T, R: 10:10 — 11:25 AM
— CS 415: M: 3:35 - 4:25 PM
» www.cs.cornell.edu/courses/cs414/2005fa/

Adminstration

Mailing list for student discussions:
— francis-class-| at cs.cornell.edu
— http://lists.cs.cornell.edu/mailman/listinfo/francis-class-|

Class announcements:
a;;;}j ¢
System

— Via CMS mail, and posts on course website

Required Textbook:

— Operating Systems Concepts: 7t Edition
Silberschatz, Galvin and Gagne

— Older editions ok, but you must figure out
which sections to read —

oy

CS 414: Overview

» Prerequisite:
— Mastery of CS 314 material

e CS 414: Systems Programming and
Operating Systems
—How OS’s work, and how to program over
them
—You can't understand computers and
programming withou understanding this!
» That's why we require it! :)

CS 414: Your load

Reading for every lecture
— Do this before lecture!
Lectures

Homework (weekly)
Small programming tasks

— Designed to emphasize performance trade-
offs in OS’s

— (A series of unfortunate events)

CS 414: Evaluation

» Two prelims and a final exam (~60%)
» A few pop quizzes on homework (~20%)
— In lieu of grading!
— Pop quiz will be a minor variation on homework
* Small programming tasks (~20%)
— Style counts!!!!
* Intangible (up to 10%)

* (these are rough percentages and subject to
tweaks)

CS 415: Overview

¢ CS 415: Practicum in Operating Systems
— Projects that complement course material
— Best way to learn about OSs
¢ This semester:
— Build various components of operating systems
« Threads, networking, file systems
« Similar to www.cs.cornell.edu/courses/cs414/2004sp/
— Work individually or in pairs
— More detail in first 415 lecture
¢ Enrollment in CS 415 is optional

Academic Integrity

* | encourage student discussion
 But you must write your own code

— | reserve the right to “spot check” you on code
* Homework

— | suggest that you try to do it individually

— If you have trouble, discuss with others

— After you finish, compare with others

Course Material

« Introduction, history, architectural support
« Concurrency, processes, threads

¢ Synchronization, monitors, semaphores

* Networking, distributed systems

* Memory Management, virtual memory

« Storage Management, 1/O, filesystems

e Security

¢ Case studies: Windows XP, Linux

Why take this course?

| said it already:

* You cannot write good performing
software (of any complexity) without
understanding the OS

You cannot design or specify a system
without understanding the OS

* And you might even write an OS someday!

What is an Operating System?

* A number of definitions:
— Just google for define: Operating System

* Afew of them:
— “Everything a vendor ships when you order an operating system”
— “The one program running at all times on the computer”
— “A program that manages all other programs in a computer”

¢ Required memory varies: less than 1 MB to a few GB

* Whatever it is, every computer has one!

Operating System: Definition

Definition
An Operating System (OS) provides a virtual machine

on top of the real hardware, whose interface is more
convenient than the raw hardware interface.

Applicati .
ppTcations OS interface

Operating System
Physical machine interface

Hardware

Advantages
Easy to use, simpler to code, more reliable, more secure, ...
You can say: “l want to write XYZ into file ABC”

Operating Systems Services

* Manage physical resources:
— It drives various devices
« Eg: CPU, memory, disks, networks, displays, cameras, etc

« Provide abstractions for physical resources
— Provide virtual resources and interfaces
« Eg: files, directories, users, threads, processes, etc
— Simplify programming through high-level abstractions
— Provide users with a stable environment, mask failures

« Isolate and mediate between entities
— Trusted intermediary for untrusted applications

What is in an OS?

Applications | Quake | | Sql Server |
| System Utils | | Shells | | Windowing & graphics |
OS Interface
| Naming | | Windowing |
Ospjsrtaetimng | Networking | | Virtual Memory | | Access Control |
Services
| Generic I/O | | File System | | Process Management |
| Device Drivers | | Memory Management |

Physical m/c Intf

‘ Interrupts, Cache, Physical Memory, Hardware Devices ‘

Logical OS Structure

Issues in OS Design

¢ Structure: how is an operating system organized ?

« Sharing: how are resources shared among users ?

« Naming: how are resources named by users or programs ?

« Protection: how is one user/program protected from another ?
« Security: how to authenticate, control access, secure privacy ?
« Performance: why is it so slow ?

« Reliability and fault tolerance: how do we deal with failures ?
« Extensibility: how do we add new features ?

Issues in OS Design

« Communication: how can we exchange information ?

« Concurrency: how are parallel activities created and controlled ?

« Scale, growth: what happens as demands or resources increase ?
« Persistence: how can data outlast processes that created them

« Compatibility: can we ever do anything new ?

« Distribution: accessing the world of information

« Accounting: who pays bills, and how to control resource usage

History of Operating Systems

Initially, the OS was just a run-time library e

— You linked your application with the OS,
— loaded the whole program into memory, and ran it
— How do you get it into the computer? Through the control panel!
Simple batch systems (mid1950s — mid 1960s)

— Permanently resident OS in primary memory

— Loaded a single job from card reader, ran it, loaded next job...

— Control cards in the input file told the OS what to do

— Spooling allowed jobs to be read in advance onto tape/disk

Compute
110

Multiprogramming Systems

* Multiprogramming systems increased utilization
— Developed in the 1960s
— Keeps multiple runnable jobs loaded in memory
— Overlaps I/0 processing of a job with computation of another
— Benefits from 1/O devices that can operate asynchronously
— Requires the use of interrupts and DMA
— Optimizes for throughput at the cost of response time

Compute — - —_ —_——
1o L
Compute l

/0

Time Sharing Systems 5’

Timesharing (1970s) allows interactive computer use
— Users connect to a central machine through a terminal
— User feels as if he has the entire machine
— Based on time-slicing: divides CPU among the users
Allows active viewing, editing, debugging, executing process
— Security mechanisms needed to isolate users
Requires memory protection hardware for isolation
Optimizes for response time at the cost of throughput

|
Compute l l [:> l

Personal Operating Systems

» Earliest ones in the 1980s
e Computers are cheap = everyone has a computer
« |Initially, the OS was a library
» Advanced features were added back
— Multiprogramming, memory protection, etc

Networked Operating Systems

« Inthe 90’s, the Internet pushed us back towards
shared systems

« Often PCs operate as “dumb terminals”

* Web applications
— Web mail
— Network games
— Internet commerce

* Network stacks become faster, more sophisticated
— Though in general this stayed on the main CPU

Distributed Operating Systems

Cluster of individual machines

— Over a LAN or WAN or fast interconnect

— No shared memory or clock
Asymmetric vs. symmetric clustering

Sharing of distributed resources, hardware and software
— Resource utilization, high availability

Permits some parallelism, but speedup is not the issue
SANSs, Oracle Parallel Server, Google

Parallel Operating Systems

« Multiprocessor or tightly coupled systems
¢ Many advantages:
— Increased throughput
— Cheaper
— More reliable
¢ Asymmetric vs. symmetric multiprocessing
— Master/slave vs. peer relationships
* Examples: SunOS Version 4 and Version 5

i

Real Time Operating Systems

Goal: To cope with rigid time constraints
Hard real-time
— OS guarantees that applications will meet their deadlines
— Examples: TCAS, health monitors, factory control
Soft real-time
— OS provides prioritization, on a best-effort basis
— No deadline guarantees, but bounded delays
— Examples: most electronic appliances
Real-time means “predictable”

* NOT fast

Ubiquitous Systems G

* PDAs, personal computers, cellular phones, sensors

* Challenges:
— Small memory size
— Slow processor
— Different display and 1/0
— Battery concerns
— Scale
Security
— Naming
* We will look into some of these problems

Over the years

« Not that batch systems were ridiculous
— They were exactly right for the tradeoffs at the time

« The tradeoffs change

1981 2005 Factor
MIPS 1 2000 2000
$IMIPS $100000 $5000 20000
DRAM 128KB 1GB (2?) 16000
Disk 10MB 80GB (more?) 8000
Net Bandwidth 9600 b/s 10 Gb/s 1000000
Users >>10 <=1 0.1

« Need to understand the fundamentals
— So you can design better systems for tomorrow’s tradeoffs

