Networking Basics

So far we have talked primarily about OS support for individual computer systems.

Today we are going to talk about networking computer systems together.

A Network

- A network is simply a collection of nodes, connected by links, that communicate and cooperate.
 - Nodes = End Hosts (PCs, PDAs, toasters?), Internal Nodes (Routers, switches, hubs,..)
 - Links = Ethernet, Wireless, point to point, ...

Questions

- What will be the format of data exchanged? How do we agree on a language among all kinds of nodes?
- Transmission across links is faulty can corrupt/lose data. How can we reliably exchange information?
- How do we find the right path between two nodes? If there are many how do we choose the best one?
- How do nodes refer to one another or address one another?
- What is the operating systems role in all this?

Communication?

- If two entities are going to communicate, they must agree on the expected order and meaning of messages they exchange.

 - Asking for the time protocol
 - SUCCESSFUL PROTOCOL EXCHANGE
 - Hi…Hi…Got the time?…two o’clock
 - ABORTED PROTOCOL
 - Hi. Don’t bother meXX
 - PROTOCOL MISMATCH
 - Allo…Hello. Quelle heure a’til …XX<blank stare>

Protocol

- Defines the format and the order of messages exchanged between communicating entities
- Defines the actions expected to be taken on the receipt or the transmission of a message
Networking protocols

- Ok let's define the "language" for all interactions over the network??
 - One single language that can support everything from web browsing to email to ftp to distributed file systems?
- Human beings are able to handle lots of complexity in their protocol processing.
 - Ambiguously defined protocols
 - Many protocols all at once
- How do computers manage complex protocol processing?

Layered Architectures

- Break-up design problem into smaller, more manageable problems
 - Layers
- Design protocols to support each well defined task
 - Not one language for everything!!

Internet protocol stack

<table>
<thead>
<tr>
<th>Physical</th>
<th>Network</th>
<th>Transport</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point-to-point links, LANs, radios, ...</td>
<td>IP</td>
<td>TCP, UDP</td>
<td>HTTP, SMTP, FTP, TELNET, DNS, ...</td>
</tr>
</tbody>
</table>

Protocol stack

<table>
<thead>
<tr>
<th>user X</th>
<th>English</th>
<th>user Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-mail client</td>
<td>SMTP</td>
<td>e-mail server</td>
</tr>
<tr>
<td>TCP server</td>
<td>TCP</td>
<td>TCP server</td>
</tr>
<tr>
<td>IP server</td>
<td>IP</td>
<td>IP server</td>
</tr>
<tr>
<td>ethernet driver/card</td>
<td>IEEE 802.3 standard</td>
<td>ethernet driver/card</td>
</tr>
</tbody>
</table>

Protocol encapsulation

<table>
<thead>
<tr>
<th>user X</th>
<th>user Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>e-mail client</td>
<td>e-mail server</td>
</tr>
<tr>
<td>TCP layer</td>
<td>TCP layer</td>
</tr>
<tr>
<td>IP layer</td>
<td>IP layer</td>
</tr>
<tr>
<td>ethernet driver/card</td>
<td>ethernet driver/card</td>
</tr>
</tbody>
</table>

Packet Switching

- Packets indicate their destination
- No predetermined path for a packet to take
- Each intermediate node routes the packet closer to its destination
A small Internet

Scenario: A wants to send data to B.

Protocol stack: packet forwarding

Passenger Forwarding

Traceroute/tracert

Graphical Traceroute (plus DNS information)

Internet Map

- Traceroute gives one slice through the Internet topology
- What does the Internet really look like?
 - That is actually a hard question to answer
 - Internet Atlas Project
 - http://www.caida.org/projects/internetatlas/
 - Techniques, software, and protocols for mapping the Internet, focusing on Internet topology, performance, workload, and routing data
The Internet around 1990

NSF Networking Architecture of Late 1990s

- NSFNET Backbone Project successfully transitioned to a new networking architecture in 1995.
 - vBNS (very high speed Backbone Network Services) - NSF funded, provided by MCI
 - 4 original Network Access Points (NSF awarded)
 - NSF funded Routing Arbiter project
 - Network Service Providers (not NSF funded)

Network Access Point

- Allows Internet Service Providers (ISPs), government, research, and educational organizations to interconnect and exchange information
- ISPs connect their networks to the NAP for the purpose of exchanging traffic with other ISPs
- Such exchange of Internet traffic is often referred to as "peering"

The Internet in 1997

CAIDA's skitter plot

Top 15 ASes in North America (14 in US, 1 in Canada)
Many links US to Asia and Europe; few direct Asia/Europe links

CAIDA: NSFNET growth until 1995

Backbone nodes elevated

Traffic Volume

CAIDA's skitter plot

Top 15 ASes in North America (14 in US, 1 in Canada)
Many links US to Asia and Europe; few direct Asia/Europe links

Copyright 2000 UC Regents, all rights reserved, North America
DNS: Domain Name System

People: many identifiers:
- SSN, name, Passport #

Internet hosts, routers:
- IP address (32 bit) - used for addressing datagrams
 - "name", e.g., gaia.cs.umass.edu - used by humans

Q: map between IP addresses and name?

Domain Name System:
- distributed database implemented in hierarchy of many name servers
- application-layer protocol host, routers, name servers to communicate to resolve names (address/name translation)
 - note: core Internet function implemented as application-layer protocol
 - complexity at network's "edge"

Names and addresses: why both?

- Name: www.google.com
- IP address (one of them): 216.239.39.147
 - (Also Ethernet or other link-layer addresses.)
- IP addresses are fixed-size numbers.
 - 32 bits: 216.239.39.147 = 101011000.11101111.00100111.10010011
- Names are memorizable, flexible:
 - Variable-length
 - Many names for a single IP address.
 - Change address doesn't imply change name.
 - IPv6 addresses are 128 bit - even harder to memorize!

Mapping Not 1 to 1

- One name may map to more than one IP address
 - IP addresses are per network interface
 - Multi-homed machines have more than one network interface - each with its own IP address
 - Example: routers must be like this

- One IP address may map to more than one name
 - One server machine may be the web server (www.foo.com), mail server (mail.foo.com), etc.

How to get names and numbers?

- Acquisition of Names and numbers are both regulated
 - Why?

How to get a name?

- First, get a domain name then you are free to assign sub names in that domain
 - How to get a domain name coming up
- Before you ask for a domain name though
 - Should understand domain name structure
 - Know that you are responsible for providing authoritative DNS server (actually a primary and one or more secondary DNS servers) for that domain and registration information through “whois”

Domain name structure

- ccTLDs = Country Code Top Level Domains
- gTLDs = Generic Top Level Domains
- second level (sub-)domains
 - google, clarkson, usrestr, etc.
Top-level Domains (TLDs)
- Generic Top Level Domains (gTLDs)
 - .com - commercial organizations
 - .org - not-for-profit organizations
 - .edu - educational organizations
 - .mil - military organizations
 - .gov - governmental organizations
 - .net - network service providers
 - New: .biz, .info, .name, ...
- Country code Top Level Domains (ccTLDs)
 - One for each country

How to get a domain name?
- In 1998, non-profit corporation, Internet Corporation for Assigned Names and Numbers (ICANN), was formed to assume responsibility from the US Government
- ICANN authorizes other companies to register domains in com, org and net and new gTLDs
 - Network Solutions is largest and in transitional period between US Govt and ICANN had sole authority to register domains in com, org and net

How to get an IP Address?
- Answer 1: Normally, answer is get an IP address from your upstream provider
 - This is essential to maintain efficient routing!
- Answer 2: If you need lots of IP addresses then you can acquire your own block of them.
 - IP address space is a scarce resource - must prove you have fully utilized a small block before can ask for a larger one and pay $$ (Jan 2002 - $2250/year for /20 and $18000/year for a /14)

How to get lots of IP Addresses? Internet Registries
- RIPE NCC (Riseaux IP Europiens Network Coordination Centre) for Europe, Middle-East, Africa
- APNIC (Asia Pacific Network Information Centre) for Asia and Pacific
- ARIN (American Registry for Internet Numbers) for the Americas, the Caribbean, sub-Saharan Africa
 - Note: Once again regional distribution is important for efficient routing!
 - Can also get Autonomous System Numbers (ASNs) from these registries

End-to-End Example
- Click -> get page
- page from local or remote computer
- link: http://www.cnn.com
- specifies: protocol (http) - location (www.cnn.com)

Locating Resource
- www.cnn.com is the name of a computer (and, implicitly, of a file in that computer)
- Use DNS to translate name to address
Connection
- The protocol (http) sets up a connection (another protocol, tcp) between the host and cnn.com to transfer the page.
- The connection transfers the page as a byte stream, without errors: flow control + error control.

Data flow
- The byte stream flows from end to end across many links and switches: routing (+ addressing).
- That stream is regulated and controlled by both ends: retransmission of erroneous or missing bytes; flow control.

Packets
- The network transports bytes grouped into packets.
- The packets are "self-contained" and routers handle them one by one.
- The end hosts worry about errors and pacing: Destination sends ACKs; Source checks losses.

Port Numbers
- When a packet arrives at its destination, the operating system uses the destination port number to identify which application should receive it.
- This is called demultiplexing.

Bits
- Equipment in each node sends the packets as a string of bits.
- That equipment is not aware of the meaning of the bits.