3: Processes

Last Modified:
6/1/2004 11:53:05 AM

Programs vs Processes

0 A program is passive

O Sequence of commands waiting to be run
0 A process is active

O An instance of program being executed

O There may be many processes running the same
program

O Also called job or task

What makes up a process?

0 Address space
0 Code
0 Data
0 Stack (nesting of procedure calls made)
O Register values (including the PC)
0 Resources allocated to the process
O Memory, open files, network connections

Address Space Map

4 Sometimes
Biggest * Stack Reserved for
Virtual (Space for local variables etc. os
Address ﬂ, 4 Stack Pointer
Statically declared variables
(Global variables)
Code pC
(Text Segment)
Ox0000 v < Sometimes

Reserved for
Error Catching

What kinds of processes are
there?

0 Compute bound/ 10 bound

0 Long-running/short-running

0 Interactive/batch

0 Large/small memory footprint

0 Cooperating with other processes?

..

0 How does the OS categorize processes?

Process States

0 During their lifetime, processes move
between various states
O Ready - waiting for a turn to use the CPU
O Running - currently executing on the CPU
« How many processes can be in this state?©
O Waiting - Unable to use the CPU because
blocked waiting for an event
O Terminated/Zombie - Finished executing but

state maintained until parent process retrieves
state




State Transitions

State Queues

0 OSes often maintain a number of queues of
processes that represent the state of the
processes
O All the runnable processes are linked together
into one queue

O All the processes blocked (or perhaps blocked
for a particular class of event) are linked
together

O As a process changes state, it is unlinked from
one queue and linked into another

Context Switch

O When a process is running, some of its
state is stored directly in the CPU
(register values, etc.)

0 When the OS stops a process, it must save
all of this hardware state somewhere (PCB)
so that it can be restored again

0 The act of saving one processes hardware
state and restoring another’s is called a
context switch

© 100s or 1000s per second!

Context Switch

i wan o P, |
i

e

—

o i bl PO, |

A s Wi o PO, |
ey 1
v

T -10

Schedulers

0 Long-term scheduler (or job scheduler) -
selects which processes should be brought
into the ready queue.

0 Short-term scheduler (or CPU scheduler) -
selects which process should be executed
next and allocates CPU.

-11

Schedulers (cont)

0 Short-term scheduler is invoked very frequently
(milliseconds) b (must be fast).

O Long-term scheduler is invoked very infrequently
(seconds, minutes) b (may be slow).

0 The long-term scheduler controls the degree of
multiprogramming.

0 Processes can be described as either:
O 1/0-bound process - spends more time doing 1/0 than

computations, many short CPU bursts.

o CPU-bound process - spends more time doing
computations; few very long CPU bursts.




Family Tree

O Age old questions - where do new processes come
from?

O New processes are created when an existing

pstree

init-+-18°[ Xvnc] init-+-184[ Xvnc]
|-amd

it 184 X

process requests it

o Creating process called the parent; created called the

child

O Children of same parent called siblings
O Children often inherit privileges/attributes from

Vet '::d'}xggﬁl st 2]
R B -sshd--
|-bafush “migration_CPUO : : e
|-crond “migration_CPUL | e

16+ desiquide_apple] -6 mingetty)

-8 geonfd-1] -2*[nautilus- - -nautilus - -8*[nautilus]] | “-sshd---csh -—-pstree
gedit -2 [nautilus--- I-sysiogd
18*[gnome-name-serv] |-3*[nautilus-—- e -6 taskist_applet)

-16¥[¢ )| | [ *[nautilus] 1-x

-16*[gnome-smproxy] |-7*[autilus-histor] -xfs---xfs

fnautilus-

~-gnome- pty-helpe mozll]

|-grome-termina +-csh- »gtop |-8*[nautilus-news]

| | -tosh -

! te-pty-helpe

1-grome.terminl + esh- tesh-—
xterm--csh

| ~-grome-pty-helpe

|

their parent -gpm
. . -8*[hyperbola]
o Working directory, Clone of address space vl lightring
S . . “Slaria penetrate
O When child is created, parent may either wait for S ourna . —-rotzoomer-—xscreensaver go
. . . —ksommﬂ cpuo -14*[sawfish] --dehoce.
it or continue in parallel “eotirad_cpU1 “orfsautish--es] | screensaver---rc-borl
ionapa et eh_0 | xscrcensaver--—sorar
|-kupdated -scsi_eh_1 Irxscrccnsavcr moi
13 -lockd |-sercmai Sty > {yptind a
Init process How is a process represented?
O In last stage of boot process, kernel creates a 0 Usually a process or task object
user level process, init p Control Block
O Init is the parent (or grandparent...) of all other 0 Process Control Bloc
processes 0 When not running how does the OS
O Init does various important housecleaning remember everything needed to start this
activities A : f
) ob running again
o checks and mounts the filesystems, sets hostname, J Rk gag o . .
timezones, etc. O Registers, Statistics, Working directory, Open
O Init reads various “resource configuration files” files, User who owns process, Timers, Parent
(/etc/rc.conf, etc) and spawns off processes to Process and sibling process ids
rovide various services : . :
P O In Linux, task_struct defined in
O In multi-user mode, init maintains processes for . . .
each terminal port ftty) include/linux/sched.h
o Usually runs getty which executes the login program
-15 -16
p—— egue sums e cons s e
Vo g St o munniter rumnable, >0 pechs o road dpeciea o oLl be
stopped e o ™90 L v, i, M anaqem ent Of PC B S
ond oy fe——
unsied ong snat unsigned ong swap_acress
unsined long ocked; * bimap ofmasked sgnals unsinediong ol o value of ma 1t/
I ;ned long dec_fit; /* page fault count of the last
sk ong fogs; flgs, defied e . .
ke e R " s ong v - umber f pagesto 0 PCBs are data structures (just like you are used to
long cebusregll 1 Harcware debugging registers s ennextpass’l at user level)
Y Flimis
, suc exec_domain exec_dormai; *various fiekls g e LTS O Space for them may be dynamically allocated as
ruct o binfmibrme o : ;
et et e kvt T'}"\esys.mm/ needed or perhaps a fixed sized array of PCBs for
nsigned iong saved feme. S0k Sty et L oty the maximum number of possible processes is
e ool oo S o semunda st sem s Il d at init ti
rnaredionypersray S—— allocated at init time
e 1, it i tak - UL, . . .
e e s s dt m.suse’n‘f’/”: e ‘:"”W‘“ B 0 As process is created, a PCB is assigned and
intporp; int tty_old_pgrp: 1 s for ths task */ initialized for it
ey TS ooy sy P omion O Often process id is an offset into an array of PCBs
Intleacer; it groupsINGROUPS] swuctfs st 15 ‘ P y
i, younger sbinby: Ser Sy o ProCeSS Youngest Conhes Sroces, ! 0 After process terminates, PCB is freed
respectey (o ~fthe can b replaced with - p- - manon enagement i ; . .
op_pptr>pid) mm struct “mn: (sometimes kept around for parent to retrieve its
S sk Stuct 'p_oppt, PP B e anders )
e ”qm J—- S S exit status)
unsgned short e idsu s intprocesso
Sranea shon gacldsurea e rocassor
unsgned fong tmeaut, poly, prrty ntioccept 1+ Lockcepth, We
unsigned ong . eal_vale, _prof. value, can context switch i and outof hokding asyscalkemellock.. 1
#endif }; -17 -18

it virt_value;
unsigned long it real_incr, it prof_incr, it virt incr;




State Queues

P —

ilotr 1 Prey Proy pry
*L_pext 1 next K et
Rest of PCB Rest of PCB Rest of PCB

Ready queue, queues per device, queue of all processes, ...

-19

Context Switch

0 When a process is running, some of its state is
stored directly in the CPU (register values, etc.)

0 When the OS stops a process, it must save all of
this hardware state somewhere (PCB) so that it
can be restored again

0 The act of saving one processes hardware state

and restoring another’s is called a context switch
O 100s or 1000s per second!

UNIX process creation

0 Fork() system call
O Creates a new PCB and a new address space

O Initializes the new address space with a *copy*
of the parent’s address space

O Initializes many other resources to copies of
the parents (e.g. same open files)
O Places new process on the queue of runnable
processes
0 Fork() returns twice: to parent and child
O Returns child's process ID to the parent
O Returns 0 to the child

21

Example Code Snippet

int min (int argc, char **argv)
{
int childPid;
childPid = fork();
if (childPid == 0){
printf(“Child running\n);

} else {
printf(“Parent running: ny child is %\n",
childpid);

}

Output

% /tryfork

Parent running: ny child is 707
Child running

%

-23

Experiments

O Try putting an infinite loop in the child’s portion (
do you return to the command shell?) and then
looking for it in the ps output

0 Try putting an infinite loop in the parent’s portion
(do you return to the command shell?)

O Put an infinite loop in both
o try killing the child (look in the ps output for the child
and the parent)
O Try killing the parent- what happens to the child?
O WARNING: DO NOT PUT THE FORK COMMAND
ITSELF IN AN INFINITE LOOP!!! YOU WILL
CRASH THE SYSTEM!




Fork and Exec

0 How do we get a brand new process not just a copy
of the parent?
O Exec () system call
o int exec (char * prog, char ** argv)
0 Exec:
O Stops the current process
O Loads the program, prog, into the address space
o Passes the arguments specified in argv
O Places the PCB back on the ready queue
0 Exec “takes over” the process
O There is no going back to it when it returns
O Try to exec something in your shell (example: exec Is) -
when Is is done your shell is gone because Is replaced it!

-25

UNIX Shell

int main (int arge, char **argv)

while (1){
int childpid;
char * cmdline = readCommandLine();

if (userChooseExit(cmiLine)){
wait for all background jobs

}

childPid = fork():

if (childPid == 0){
set STDOUT _STDI N_STDERR( crmiLi ne);
exec ( get Command (cmdLine));

} else {
if (runinForeground(cmdLine) ) {
wait (childPid);
}

Windows Process Creation

BOOL CreateProcess(
LPCTSTR IpApplicationName, // name of executable
module LPTSTR IpCommandLine, // command line string
LPSECURITY_ATTRIBUTES IpProcessAttributes, // SD
LPSECURITY_ATTRIBUTES IpThreadAttributes, // SD
BOOL binheritHandles, // handle inheritance option
DWORD dwCreationFlags, // creation flags
LPVOID IpEnvironment, // new environment block
LPCTSTR IpCurrentDirectory, // current directory name
LPSTARTUPINFO IpStartuplnfo, // startup information
LPPROCESS_INFORMATION IpProcessInformation //

information );

-27

Windows vs Unix

0 Windows doesn't maintain the same
relationship between parent and child

0 Later versions of Windows have concept of
“job” to mirror UNIX notion of parent and
children (process groups)

0 Waiting for a process to complete?
0 WaitforSingleObject to wait for completion

0 GetExitCodeProcess ( will return STILL_ALIVE
until process has terminated)

Cooperating Processes

0O Processes can run independently of each other or
processes can coordinate their activities with
other processes

0 To cooperate, processes must use OS facilities to
communicate
o One example: parent process waits for child
o Many others

« Shared Memory
« Files

Sockets

Pipes

Signals

Events

Remote Procedure Call

-29

Sockets

0 A socket is an end-point for communication
over the network

O Create a socket
oint socket(int domain, int type, int

protocol)

o Type = SOCK_STREAM for TCP

O Read and write socket just like files

0 Can be used for communication between

two processes on same machine or over the
network




Pipes

O Bi-directional data channel between two
processes on the same machine

0 Created with:
oint pipe (int fildes[2])

O Read and write like files

-31

Signals

0 Processes can register to handle signals with the
signal function
o void signal (int signum void (*proc) (int))
0 Processes can send signals with the kill function
okill (pid, signum
0 System defined signals like SIGHUP (0), SIGKILL
(9), SIGSEGV(11)
O In UNIX shell, try:
“kill -9 pidOfProcessYouDon'tReallyCareAbout”
0 Signals not used by system like SIGUSR1 and
SIGUSR2
O Note: sigsend/sigaction similar to kill/signal

Remote Procedure Call (RPC)

ibent rmale ohject

val = mirvie agmabeihon A 8y | | Booasn sosaldarod (Dbt 5. Ohme v
| implemnsiation of wmebdutiod
|

-33

Processes

0 What is a process?

O Process States

0 Switching Between Processes
0 Process Creation

O PCBs

0 Communication/Cooperation between
processes

Outtakes

0 Could spend more time on things in Process
Creation and Signal chapter of Stevens

-35




