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Lab Overview

= We will be disassembling the C library
functions setfymp and /ongymp

= Doing so will give you an understanding
of the Intel architecture, C calling
conventions, stack operation, and
Insight into context switching within the
Intel architecture
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longjmp

Eestores stack environment and execution locale.,

void [EEas¢ jmp_buf env, int vaiue 3;

Routine Required Header CGCompatibility

DLl iligds <setjimp.h= AMNSI, Win 95, Win NT

For additional compatibility information, see Compatibility in the

Introduction,

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSWCRET.LIB Import library for MSYCRT.DLL, retail version

Return Yalue

I
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How to Learn 80x86
Assembly and Intel
cConventions

= Links to the Intel Architecture Manuals 1-3
are on the CS 414 web page

= The February and June 1998 Microsoft
Systems Journal “Under the Hood” columns
by Matt Pietrek will be extremely helpful in
understanding and debugging Intel assembly
code generated by the Visual C++ compiler
(The Microsoft System’s Journal can be found
at http://www.microsoft.com/msj/)
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Setymp/Longimp
Ooverview

= Intel Architecture: General Introduction
= C Calling convention

= Setymp/Longjmp Basics

= Lab Discussion
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Intel Pentium Architecture

Little endian (least significant byte located at lowest
address)

32-bit processors

= 16 Integer Unit Registers

= 8 32-bit General Purpose

= 6 16-bit Segment

= 1 32-bit Instruction Pointer
= 1 32-bit Flag

The floating point unit has a number of registers, too
(see next slide). Our focus is on the Integer Unit.
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Floating Point Unit

= 14 Floating-point Registers
= 8 80-bit General Purpose
= 1 48-bit FPU Instruction Pointer
1 48-bit Operand (Data) Register
= 1 16-bit Control Register
1 16-bit Status Register
= 1 16-bit Tag Register
= 1 11-bit (Last Executed) Opcode Register

= The FPU stack iIs contained within the 8
General Purpose registers
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More on Integer Registers

= General Purpose Registers are eax, ebx, ecx,
edx, esl, edi, esp, and ebp

= ebp points to the base of the current stack
frame

= esp points to the top of the stack

= |f we want to save the current state of a
program then we must save the registers it is
using including the elp instruction pointer,
esp and ebp stack registers, system flags,
and all segment registers that might change
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NT Processes and theirr
Stacks

= NT initializes your process 0
with an initial stack, heap,
and code segment

= Stacks grow downward

= Dynamic data Is allocated
from the Heap (grows
upward)

2000

stack

50000
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Stack Calling Conventions

= ebp points to bottom of stack frame
= Esp points to top of stack

= Function parameters pushed on stack lowest to highest var n,
varn-1,...varl

= Next comes the instruction pointer eip
= One word of padding

= Local Variables local 1, 2 words of padding, local 2, 2 words of
padding, . . . Local n

= Finally, the remainder can be pushed/popped to
= (Integer/Pointer) Return values always placed in eax

= Special Note: 196 bytes (49 words) of padding are placed
between stack frames by VC++ since we are compiling in debug
mode. Some state is also saved.

= Also Note: Visual C++ always sets ebp = esp at the beginning

of a function
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Sample Stack Portion
(Padding Not Shown)

Stack Segment

Botiom of Stack
{Initial ESP Yalug)

Local variables
for Calling
Procedura

Farameter 4

Parameters
Passed to Farameter 3 The EBP register is

Called

typically set to point
AT e ey Farameter 2 S
| Farameter 1 instruction pointer.
Frame Boundary
Retur%ir:ﬁg'uclmn -~ EBP Register

ESP Register

Top of Stack

Pusheas Mowve tha Pops Mowve the
Top Of Stack to Top OF Stack to
Lowwear Addressas Higher Addressas
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CS415 Overview and

Setymp/Longymp Basics

Setjmp saves the stack pointers (esp, ebp), some general
purpose registers, and the instruction pointer into an instance of
the ymp_buf data structure.

Longjmp takes a jmp_buf instance and restores the saved
register values. In effect, longjmp allows one to jump up the
calling stack to any previous stack frame beginning at the next
instruction past the originally called setymp.

Saved state in the jmp_buf structure is restored, but everything
else remains unchanged. (ie if x, a local variables stored on the
stack, was changed from a value of 10 before setjmp was called
to a values of 12 after setymp was called it would still have a
value of 12 when longjmp was called.

Setjmp’s return value is always 0. Longjmp jumps to the
assembly instruction after setjmp with a non-zero return value.

1z
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Project 1 Setymp.C Source

jmp_buf mark; /* setjmp state data structure */
void main( void ) {

}

int v1, v2, v3;
vl =2,v2 =3,v3 =4
jmpret = setymp( mark );
if( jmpret ==0) {
printf("vl = %d, v2 = %d, v3 = %d\n", v1, v2, v3);
vl =v2 =v3 = 222;
longjmp(mark, -1);
b
else {
printf("vl = %d, v2 = %d, v3 = %d\n", v1, v2, v3);
¥

return;
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Setymp.C Result

= vl =2, v2 = 3, v3 = 4 before setymp is called

= vl =v2 =v3 = 222 at the second printf
statements

= |f vl, v2, and/or v3 were a register variable
and that register was saved in the jmp_buf
structure “mark” then its value would have
reverted to 2, 3, and/or 4 respectively

= jmp_ret is 0 when setjmp Is called and -1
after the longjmp jump
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Project 1 Part A

= Download the setjmp.C example file and the project Makefile
from the CS 415 web site

= Compile setjmp.exe and load it into the Visual Debugger.

= Experiment with the program (step through the code, change
things to see what happens, etc). Be sure to work with the
disassembly code view and NOT just the C view.

= When you are comfortable, return to the original setymp.C code.
Get a disassembly view and copy the setjmp and longjmp code
(only), into a text file. Since they are macros, you will actually
be copying the setjmp3 and _longjmp functions.

= Begin labeling all assembly code in the text file to show that you
understand it.

CS415 Overview and

. . . 15
Setymp/Longymp Project 1



Part A Notes

=  Setjmp/Longjmp have some sanity checks. You should be able
to label the assembly instructions, but do not need to
understand what is done inside anything called from those two
functions. You should label what blocks of instructions are
doing if you can determine it.

= There is also a section of setjmp/longjmp in place to work with
C++ exception code. You do not need to understand
everything that it is doing, but the statements themselves must
be labeled.

= FYI: This section accesses the 0'th integer of the fs segment
because that is where all status information is kept for the
thread of execution in Windows NT.

= Special Note: Because setjmp and longjmp are macros, their
disassembly differs a bit from what corresponding function calls

would look like.
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Part A Disassembly View
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Part A Comment Example

**Call the longjmp procedure with a return value of —1**
52: longjmp(mark, -1);

Push —1 onto the stack
004011AB push OFFh

Push the offset of the mark structure
004011AD push offset _mark (00417860)

Call longjmp (underscore here since setjmp/longymp are macros)
004011B2 call _longymp (004012€8)
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Part B Assignment

= At the bottom of your handout are a
number of setymp/longjmp questions

= Attempt to answer each of the
guestions and hand in on a typed sheet
of paper

= The first five questions are multiple
choice. The sixth Is an essay question.
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Summary

* Disassemble setjmp/longjmp example
= Comment the disassembly
= Answer the setymp/longjmp questions
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