Understanding
Setymp/Longimp

Ken Hopkinson
hopkik@cs.cornell _edu

Lab Overview

= We will be disassembling the C library
functions setfymp and /ongymp

= Doing so will give you an understanding
of the Intel architecture, C calling
conventions, stack operation, and
Insight into context switching within the
Intel architecture

CS5415 Overview and
Setymp/Longymp Project 1

The Visual C++ Help System

E? MSDN Library ¥izual Studio 6.0 - O] x|
File Edt Yiew Go Help

T 4L s = 9) S

Hide Locate PFrevious [Hest Back Fomward Stop HRefresh Home Prit
Active Subzet -

I [Entire Callection]

=

Q:untenﬁl Index Search I Favur_itesl

Type in the word(z] to 2earch far:

IIDngimp ;I ﬂ
Lizt Topics | Digplay

Select topic: Faund: 37
Title I Location | Ral =
langjrp Visual C+...
Howe to Trap Floatin... Krowledg... 2
zetimp Yigual C+.. 3
POSIE Ltilities “Windows .. 4
FRE: Longimp Inzid... Khowledg.., 5
Visual C++Verz 20, Krnowledg..., B
FREB: Error 2065 ... Knowledg... 7
Uzing zetimp/longimp Wisual C+.. 8
RwDLG.C Platform 5... 4
IMFO: Handling Flo... Krowledg... 10
Temination-Handle... “Windows ... 11«
i | »

[T Search previous results
[V tatch similar words
[T Search titles only

longjmp

Eestores stack environment and execution locale.,

void [EEas¢ jmp_buf env, int vaiue 3;

Routine Required Header CGCompatibility

DLl iligds <setjimp.h= AMNSI, Win 95, Win NT

For additional compatibility information, see Compatibility in the

Introduction,

Libraries

LIBC.LIB Single thread static library, retail version
LIBCMT.LIB Multithread static library, retail version
MSWCRET.LIB Import library for MSYCRT.DLL, retail version

Return Yalue

I

Setymp/Longymp Project 1

How to Learn 80x86
Assembly and Intel
cConventions

= Links to the Intel Architecture Manuals 1-3
are on the CS 414 web page

= The February and June 1998 Microsoft
Systems Journal “Under the Hood” columns
by Matt Pietrek will be extremely helpful in
understanding and debugging Intel assembly
code generated by the Visual C++ compiler
(The Microsoft System’s Journal can be found
at http://www.microsoft.com/msj/)

CS5415 Overview and
Setymp/Longymp Project 1

Setymp/Longimp
Ooverview

= Intel Architecture: General Introduction
= C Calling convention

= Setymp/Longjmp Basics

= Lab Discussion

CS5415 Overview and
Setymp/Longymp Project 1

Intel Pentium Architecture

Little endian (least significant byte located at lowest
address)

32-bit processors

= 16 Integer Unit Registers

= 8 32-bit General Purpose

= 6 16-bit Segment

= 1 32-bit Instruction Pointer
= 1 32-bit Flag

The floating point unit has a number of registers, too
(see next slide). Our focus is on the Integer Unit.

CS5415 Overview and 6
Setymp/Longymp Project 1

Floating Point Unit

= 14 Floating-point Registers
= 8 80-bit General Purpose
= 1 48-bit FPU Instruction Pointer
1 48-bit Operand (Data) Register
= 1 16-bit Control Register
1 16-bit Status Register
= 1 16-bit Tag Register
= 1 11-bit (Last Executed) Opcode Register

= The FPU stack iIs contained within the 8
General Purpose registers

CS5415 Overview and
Setymp/Longymp Project 1

More on Integer Registers

= General Purpose Registers are eax, ebx, ecx,
edx, esl, edi, esp, and ebp

= ebp points to the base of the current stack
frame

= esp points to the top of the stack

= |f we want to save the current state of a
program then we must save the registers it is
using including the elp instruction pointer,
esp and ebp stack registers, system flags,
and all segment registers that might change

CS5415 Overview and
Setymp/Longymp Project 1

NT Processes and theirr
Stacks

= NT initializes your process 0
with an initial stack, heap,
and code segment

= Stacks grow downward

= Dynamic data Is allocated
from the Heap (grows
upward)

2000

stack

50000

C5415 Overview and 9
Setymp/Longymp Project 1

Stack Calling Conventions

= ebp points to bottom of stack frame
= Esp points to top of stack

= Function parameters pushed on stack lowest to highest var n,
varn-1,...varl

= Next comes the instruction pointer eip
= One word of padding

= Local Variables local 1, 2 words of padding, local 2, 2 words of
padding, . . . Local n

= Finally, the remainder can be pushed/popped to
= (Integer/Pointer) Return values always placed in eax

= Special Note: 196 bytes (49 words) of padding are placed
between stack frames by VC++ since we are compiling in debug
mode. Some state is also saved.

= Also Note: Visual C++ always sets ebp = esp at the beginning

of a function
CS415 Overview and

. . . 1
Setymp/Longymp Project 1 o

Sample Stack Portion
(Padding Not Shown)

Stack Segment

Botiom of Stack
{Initial ESP Yalug)

Local variables
for Calling
Procedura

Farameter 4

Parameters
Passed to Farameter 3 The EBP register is

Called

typically set to point
AT e ey Farameter 2 S
| Farameter 1 instruction pointer.
Frame Boundary
Retur%ir:ﬁg'uclmn -~ EBP Register

ESP Register

Top of Stack

Pusheas Mowve tha Pops Mowve the
Top Of Stack to Top OF Stack to
Lowwear Addressas Higher Addressas

CS5415 Overview and
Setymp/Longymp Project 1

11

CS415 Overview and

Setymp/Longymp Basics

Setjmp saves the stack pointers (esp, ebp), some general
purpose registers, and the instruction pointer into an instance of
the ymp_buf data structure.

Longjmp takes a jmp_buf instance and restores the saved
register values. In effect, longjmp allows one to jump up the
calling stack to any previous stack frame beginning at the next
instruction past the originally called setymp.

Saved state in the jmp_buf structure is restored, but everything
else remains unchanged. (ie if x, a local variables stored on the
stack, was changed from a value of 10 before setjmp was called
to a values of 12 after setymp was called it would still have a
value of 12 when longjmp was called.

Setjmp’s return value is always 0. Longjmp jumps to the
assembly instruction after setjmp with a non-zero return value.

1z

Setymp/Longymp Project 1

Project 1 Setymp.C Source

jmp_buf mark; /* setjmp state data structure */
void main(void) {

}

int v1, v2, v3;
vl =2,v2 =3,v3 =4
jmpret = setymp(mark);
if(jmpret ==0) {
printf("vl = %d, v2 = %d, v3 = %d\n", v1, v2, v3);
vl =v2 =v3 = 222;
longjmp(mark, -1);
b
else {
printf("vl = %d, v2 = %d, v3 = %d\n", v1, v2, v3);
¥

return;

CS415 Overview and

Setymp/Longymp Project 1

13

Setymp.C Result

= vl =2, v2 = 3, v3 = 4 before setymp is called

= vl =v2 =v3 = 222 at the second printf
statements

= |f vl, v2, and/or v3 were a register variable
and that register was saved in the jmp_buf
structure “mark” then its value would have
reverted to 2, 3, and/or 4 respectively

= jmp_ret is 0 when setjmp Is called and -1
after the longjmp jump

CS415 Overview and

. . . 14
Setymp/Longymp Project 1

Project 1 Part A

= Download the setjmp.C example file and the project Makefile
from the CS 415 web site

= Compile setjmp.exe and load it into the Visual Debugger.

= Experiment with the program (step through the code, change
things to see what happens, etc). Be sure to work with the
disassembly code view and NOT just the C view.

= When you are comfortable, return to the original setymp.C code.
Get a disassembly view and copy the setjmp and longjmp code
(only), into a text file. Since they are macros, you will actually
be copying the setjmp3 and _longjmp functions.

= Begin labeling all assembly code in the text file to show that you
understand it.

CS415 Overview and

. . . 15
Setymp/Longymp Project 1

Part A Notes

= Setjmp/Longjmp have some sanity checks. You should be able
to label the assembly instructions, but do not need to
understand what is done inside anything called from those two
functions. You should label what blocks of instructions are
doing if you can determine it.

= There is also a section of setjmp/longjmp in place to work with
C++ exception code. You do not need to understand
everything that it is doing, but the statements themselves must
be labeled.

= FYI: This section accesses the 0'th integer of the fs segment
because that is where all status information is kept for the
thread of execution in Windows NT.

= Special Note: Because setjmp and longjmp are macros, their
disassembly differs a bit from what corresponding function calls

would look like.

CS415 Overview and

. . . 16
Setymp/Longymp Project 1

Part A Disassembly View

*.. zetimp_debug - Microzoft Yisual C++ [break] = |E|i|
Fil= Edit “iew lnzert Project Debug Tool: “wWindow Help
NI E R = =1 aa
| =l == LB
P8 Disassembly
oo401186 o =cx ., dword ptr [ebp+14hk] H
aoo401189 o =d= . dwvord ptr [ec=x]
— o040118E push =d=x
go40118C =0 sax.dword ptr [=sbp+10h]
/: ?ave i 0040118F T ecx. dword ptr [eax]
im= thr
* After th oo401191 pu=sh =c
* conditic aoo401192 o =d=x . dword ptr [ebp+0Ch]
2 go401195 mor sax.dword ptr [ed=]
impret = =e 004011927 pu=sh =ax
- - ago40119s o =cx, dword ptr [ebp+8]
itl dmpret 0040119E
extroa fun o =d= . dwvord ptr [ec=x]
— a040119D pu=sh =dx
Zl=e | O040119E pu=sh offs=st string "vwl = Xxd. w2 = =d. w3 = xd. w4 = " ... (0041314=)
rintf (v 00401143 call printf (004011407
P o0401148 add e=p. 2Ch
== longjmpi{mark. —1}:
. = 004011AE push OFFh
rELUrn: 00401140 push cff=et _mark (00417860
oo4011EB2 call _longimp {004012=8)
. 53 T
wold extra ful fpin11B7 pop =di
®wl = ®=v2 00401188 pop ==1 =
printf (" 4] | L3
o longimpimare, —I 1. =]
¥ EAXH gooooosed4 EBX = 00540000
ECHK = 00770F20 EDX = 00416052
ESI = 21DDE7&0 EDI = 00c4FDEO0
|<| | ETFP = 004011AFR ESP = 00c4FDO4
EEF = 0054FDE0 EFL = 00000212 C5 = 018F
DS = 0197 ES = 0197 55 = 0197 FS5 = 6DA7T
55 = 0000 OW=0 UF=0 EI=1 PL=0 ZR=0 AC=1
FE=0 C¥=0
« |4| | STO = +0.00000000000000000=+0000
ST1 = +0.00000000000000000=+0000
= — - - - - = = - - - = ST2 = +0.00000000000000000=+0000 LI
o ante:-ct:Ie:-ctra_func:tlon[lnt ik 7, nk *,nk L ink Fink F,ink = dnt ELink =, ink ¥ LI St :!'m..... I
MHame Yalue |A :
E marl O0=00417860 _marlk
— [0=0] Ox=00&64fdf 8
— [0=1] Ox=00540000 - -
4[> Iy, Aute 4 Locals & this # A [I watend wSatchi2 s W atch3 3w atchd £
Ready
CS5415 Overview and

. . . 17
Setymp/Longymp Project 1

Part A Comment Example

Call the longjmp procedure with a return value of —1
52: longjmp(mark, -1);

Push —1 onto the stack
004011AB push OFFh

Push the offset of the mark structure
004011AD push offset _mark (00417860)

Call longjmp (underscore here since setjmp/longymp are macros)
004011B2 call _longymp (004012€8)

CS415 Overview and

18
Setymp/Longymp Project 1

Part B Assignment

= At the bottom of your handout are a
number of setymp/longjmp questions

= Attempt to answer each of the
guestions and hand in on a typed sheet
of paper

= The first five questions are multiple
choice. The sixth Is an essay question.

CS5415 Overview and 79
Setymp/Longymp Project 1

Summary

* Disassemble setjmp/longjmp example
= Comment the disassembly
= Answer the setymp/longjmp questions

CS5415 Overview and
Setymp/Longymp Project 1

20

	Understanding Setjmp/Longjmp
	Lab Overview
	The Visual C++ Help System
	How to Learn 80x86 Assembly and Intel Conventions
	Setjmp/Longjmp Overview
	Intel Pentium Architecture
	Floating Point Unit
	More on Integer Registers
	NT Processes and their Stacks
	Stack Calling Conventions
	Sample Stack Portion(Padding Not Shown)
	Setjmp/Longjmp Basics
	Project 1 Setjmp.C Source
	Setjmp.C Result
	Project 1 Part A
	Part A Notes
	Part A Disassembly View
	Part A Comment Example
	Part B Assignment
	Summary

