
Understanding
Setjmp/Longjmp

Ken Hopkinson
hopkik@cs.cornell.edu

2CS415 Overview and
Setjmp/Longjmp Project 1

Lab Overview

We will be disassembling the C library
functions setjmp and longjmp
Doing so will give you an understanding
of the Intel architecture, C calling
conventions, stack operation, and
insight into context switching within the
Intel architecture

3CS415 Overview and
Setjmp/Longjmp Project 1

The Visual C++ Help System

4CS415 Overview and
Setjmp/Longjmp Project 1

How to Learn 80x86
Assembly and Intel

Conventions
Links to the Intel Architecture Manuals 1-3
are on the CS 414 web page
The February and June 1998 Microsoft
Systems Journal “Under the Hood” columns
by Matt Pietrek will be extremely helpful in
understanding and debugging Intel assembly
code generated by the Visual C++ compiler
(The Microsoft System’s Journal can be found
at http://www.microsoft.com/msj/)

5CS415 Overview and
Setjmp/Longjmp Project 1

Setjmp/Longjmp
Overview

Intel Architecture: General Introduction
C Calling convention
Setjmp/Longjmp Basics
Lab Discussion

6CS415 Overview and
Setjmp/Longjmp Project 1

Intel Pentium Architecture
Little endian (least significant byte located at lowest
address)
32-bit processors
16 Integer Unit Registers

8 32-bit General Purpose
6 16-bit Segment
1 32-bit Instruction Pointer
1 32-bit Flag

The floating point unit has a number of registers, too
(see next slide). Our focus is on the Integer Unit.

7CS415 Overview and
Setjmp/Longjmp Project 1

Floating Point Unit

14 Floating-point Registers
8 80-bit General Purpose
1 48-bit FPU Instruction Pointer
1 48-bit Operand (Data) Register
1 16-bit Control Register
1 16-bit Status Register
1 16-bit Tag Register
1 11-bit (Last Executed) Opcode Register

The FPU stack is contained within the 8
General Purpose registers

8CS415 Overview and
Setjmp/Longjmp Project 1

More on Integer Registers

General Purpose Registers are eax, ebx, ecx,
edx, esi, edi, esp, and ebp
ebp points to the base of the current stack
frame
esp points to the top of the stack
If we want to save the current state of a
program then we must save the registers it is
using including the eip instruction pointer,
esp and ebp stack registers, system flags,
and all segment registers that might change

9CS415 Overview and
Setjmp/Longjmp Project 1

NT Processes and their
Stacks

0NT initializes your process
with an initial stack, heap,
and code segment
Stacks grow downward
Dynamic data is allocated
from the Heap (grows
upward)

code

2000
heap

stack
50000

10CS415 Overview and
Setjmp/Longjmp Project 1

Stack Calling Conventions
ebp points to bottom of stack frame
Esp points to top of stack
Function parameters pushed on stack lowest to highest var n,
var n - 1, . . . var 1
Next comes the instruction pointer eip
One word of padding
Local Variables local 1, 2 words of padding, local 2, 2 words of
padding, . . . Local n
Finally, the remainder can be pushed/popped to
(Integer/Pointer) Return values always placed in eax
Special Note: 196 bytes (49 words) of padding are placed
between stack frames by VC++ since we are compiling in debug
mode. Some state is also saved.
Also Note: Visual C++ always sets ebp = esp at the beginning
of a function

11CS415 Overview and
Setjmp/Longjmp Project 1

Sample Stack Portion
(Padding Not Shown)

12CS415 Overview and
Setjmp/Longjmp Project 1

Setjmp/Longjmp Basics
Setjmp saves the stack pointers (esp, ebp), some general
purpose registers, and the instruction pointer into an instance of
the jmp_buf data structure.
Longjmp takes a jmp_buf instance and restores the saved
register values. In effect, longjmp allows one to jump up the
calling stack to any previous stack frame beginning at the next
instruction past the originally called setjmp.
Saved state in the jmp_buf structure is restored, but everything
else remains unchanged. (ie if x, a local variables stored on the
stack, was changed from a value of 10 before setjmp was called
to a values of 12 after setjmp was called it would still have a
value of 12 when longjmp was called.
Setjmp’s return value is always 0. Longjmp jumps to the
assembly instruction after setjmp with a non-zero return value.

13CS415 Overview and
Setjmp/Longjmp Project 1

Project 1 Setjmp.C Source
jmp_buf mark; /* setjmp state data structure */
void main(void) {

int v1, v2, v3;
v1 = 2, v2 = 3, v3 = 4;
jmpret = setjmp(mark);
if(jmpret == 0) {
printf("v1 = %d, v2 = %d, v3 = %d\n", v1, v2, v3);
v1 = v2 = v3 = 222;
longjmp(mark, -1);

}
else {
printf("v1 = %d, v2 = %d, v3 = %d\n", v1, v2, v3);

}
return;

}

14CS415 Overview and
Setjmp/Longjmp Project 1

Setjmp.C Result

v1 = 2, v2 = 3, v3 = 4 before setjmp is called
v1 = v2 = v3 = 222 at the second printf
statements
If v1, v2, and/or v3 were a register variable
and that register was saved in the jmp_buf
structure “mark” then its value would have
reverted to 2, 3, and/or 4 respectively
jmp_ret is 0 when setjmp is called and –1
after the longjmp jump

15CS415 Overview and
Setjmp/Longjmp Project 1

Project 1 Part A
Download the setjmp.C example file and the project Makefile
from the CS 415 web site
Compile setjmp.exe and load it into the Visual Debugger.
Experiment with the program (step through the code, change
things to see what happens, etc). Be sure to work with the
disassembly code view and NOT just the C view.
When you are comfortable, return to the original setjmp.C code.
Get a disassembly view and copy the setjmp and longjmp code
(only), into a text file. Since they are macros, you will actually
be copying the _setjmp3 and _longjmp functions.
Begin labeling all assembly code in the text file to show that you
understand it.

16CS415 Overview and
Setjmp/Longjmp Project 1

Part A Notes
Setjmp/Longjmp have some sanity checks. You should be able
to label the assembly instructions, but do not need to
understand what is done inside anything called from those two
functions. You should label what blocks of instructions are
doing if you can determine it.
There is also a section of setjmp/longjmp in place to work with
C++ exception code. You do not need to understand
everything that it is doing, but the statements themselves must
be labeled.
FYI: This section accesses the 0’th integer of the fs segment
because that is where all status information is kept for the
thread of execution in Windows NT.
Special Note: Because setjmp and longjmp are macros, their
disassembly differs a bit from what corresponding function calls
would look like.

17CS415 Overview and
Setjmp/Longjmp Project 1

Part A Disassembly View

18CS415 Overview and
Setjmp/Longjmp Project 1

Part A Comment Example
Call the longjmp procedure with a return value of –1
52: longjmp(mark, -1);

Push –1 onto the stack
004011AB push 0FFh

Push the offset of the mark structure
004011AD push offset _mark (00417860)

Call longjmp (underscore here since setjmp/longjmp are macros)
004011B2 call _longjmp (004012e8)

19CS415 Overview and
Setjmp/Longjmp Project 1

Part B Assignment

At the bottom of your handout are a
number of setjmp/longjmp questions
Attempt to answer each of the
questions and hand in on a typed sheet
of paper
The first five questions are multiple
choice. The sixth is an essay question.

20CS415 Overview and
Setjmp/Longjmp Project 1

Summary

Disassemble setjmp/longjmp example
Comment the disassembly
Answer the setjmp/longjmp questions

	Understanding Setjmp/Longjmp
	Lab Overview
	The Visual C++ Help System
	How to Learn 80x86 Assembly and Intel Conventions
	Setjmp/Longjmp Overview
	Intel Pentium Architecture
	Floating Point Unit
	More on Integer Registers
	NT Processes and their Stacks
	Stack Calling Conventions
	Sample Stack Portion(Padding Not Shown)
	Setjmp/Longjmp Basics
	Project 1 Setjmp.C Source
	Setjmp.C Result
	Project 1 Part A
	Part A Notes
	Part A Disassembly View
	Part A Comment Example
	Part B Assignment
	Summary

