
1. Solve Problem 7.8, the Barbershop Problem, in the book.

2. Solve Problem 7.9, the Cigarette-Smokers Problem, in the book.

3. You have been hired by the Large-Concurrent-Systems-R-Us Company to review their code.
Below is their atomic_swap procedure. It should take two stack data structures as arguments, pop
an item from each, and push the items onto the opposite stack. If either stack is empty, the swap
should fail and the stacks should be left as they were before the swap was attempted. The swap
must appear to occur atomically – an external thread performing a concurrent swap should not be
able to observe that an item has been removed from one stack but not pushed onto the other one.
In addition, the implementation must be concurrent – it must allow multiple swaps between
unrelated stacks to happen in parallel. You may assume that stack1 and stack2 never refer to the
same stack. Here is their implementation:

extern Item *pop(Stack *); // pops an item from a stack
extern void push(Stack *, Item *); // pushes an item onto a stack
void P(Semaphore *s); // semaphore wait
void V(Semaphore *s); // semaphore signal

void atomic_swap(Stack *stack1, Stack *stack2) {
 Item *item1;

Item *item2; // items being transferred

 P(stack1->lock);
 item1 = pop(stack1);
 if(item1 != NULL) {

P(stack2->lock);
item2 = pop(stack2);
if(item2 != NULL) {

 push(stack2, item1);
 push(stack1, item2);
 V(stack2->lock);
 V(stack1->lock);
 }
 }
}

a. Cite three problems with this code.
b. Provide a new implementation that fixes these problems.

4. Concurrent-Systems-R-Us has built a new operating system. This simple system provides
three primitives for managing threads:
 int thread_create(void (*f)());

void thread_start(int threadid);
 void thread_stop();

thread_create() creates a new thread and returns its thread identifier. This newly created
thread is in the suspended state. thread_start() takes a suspended thread, marks that thread
as runnable, and places it on the scheduler’s run queue. The behavior of thread_start() is
undefined if the thread is not suspended. thread_stop() operates implicitly on the calling thread
– it marks the currently running thread as suspended, and removes it from the run queue. The
scheduling policy is unspecified, but is known to be preemptive.

Concurrent-Systems-R-Us has tried to build a software-controlled radar using this system. The
radar is controlled by two threads, a transmitter and a receiver thread, which are supposed to
alternate (i.e. first the transmitter executes, then the receiver, then the transmitter, then the
receiver, and so on). To achieve this alternation, the programmers decided to use low-level
thread manipulation, instead of standard synchronization primitives like monitors with condition
variables – efficiency was their excuse. Here is their code:

 int xmit, rcv;

void transmitter() {
 while(TRUE) {

 printf(“In transmitter!\n”);
 /* do transmission work */
 thread_start(rcv);
 thread_stop();
 }
 }
 void receiver() {
 while(TRUE) {

thread_stop();
 printf(“In receiver!\n”);
 /* do reception work */
 thread_start(xmit);
 }
 }
 void startradar() {
 xmit = thread_create(transmitter);
 rcv = thread_create(receiver);
 thread_start(xmit);

thread_start(rcv);
/* main thread loops forever now */
while(TRUE);

 }
Concurrent-Systems-R-Us reports that their software radar “does not work reliably.” Identify the
cause of the problem, describe what behavior the users would see as a result, and fix it using
semaphores.

5. Five philosophers are seated around a dining table
that has five forks. Each philosopher needs two forks to
eat, and alternates between eating and thinking really
hard. [Presumably, during the intense thinking periods,
they are all wondering why they need two forks (no one
knows) and whether they can get more utensils
delivered (out of the question)]. Each philosopher has a
unique id i. Any given philosopher can only reach the
forks to her left (Fork i) and right (Fork (i+1) mod 5).

Each philosopher is modeled as a separate thread that
performs the following actions:

void philosopher(int i) {
 while(true) {
 Think();
 // grab two forks

 Eat();
 // release the forks

 }
}

The dining philosophers problem requires that the following correctness properties are upheld:
 - A philosopher only eats if he has two forks.
 - No two philosophers may hold the same fork simultaneously.
 - No deadlock.
 - Efficient behavior.
Luckily, the Think() and Eat() routines are bounded; that is, they return to the caller after a short
period of time, so no philosopher will ever take some forks and refuse to give them up. They eventually
give up thinking and eat, or become full and stop eating.

Using semaphores, write a deadlock and starvation-free (no pun intended) solution to the dining
philosophers problem. You may assume that semaphores have the same properties as the
semaphores in your minithreads implementation. You may modify the template shown above for a
philosopher to incorporate different behavior.

Fork 0

Fork 1

Phil 1

Phil 4

Phil 2

Phil 3

Fork 4

Fork 2

Phil 0

Fork 3

6. You have been hired to coordinate the Willy Wonka Chocolate Chip Factory. Your task is to
make chocolate chip cookies using equal parts of dough and chocolate chips as ingredients. The
simulation is set up such that there are N threads, corresponding to little kids, each of which
supply a pound of dough. In addition, there are M threads, corresponding to grownups, each of
which supply five pounds of chips. When five pounds of chocolate chips are combined with five
pounds of dough, the factory produces ten pounds of chocolate chips. Grownups and the little
kids then get to consume the chocolate chip cookies. Combining the ingredients in unequal
amounts leads to chips that contain too much chocolate or too much dough, and gets you fired by
the quality control folks. Failing to make cookies when there is a sufficient amount of cookies
and dough also gets you fired. However, it is fine to allow a late arriving kid or grownup to eat
cookies before a grownup or kid who has been waiting for cookies for some time.

The little kids and grownups behave according to the following routines:

littlekid() {
 while(true) {
 // get a pound of dough
 doughReady();
 // doughReady should not return until cookies are

// ready
 eatcookies();
 }
 }

grownup() {
 while(true) {
 // get five pounds of chocolate chips
 chipsReady();
 // chipsReady should not return until cookies are

// ready
 eatcookies();
 }
 }

N and M, the number of little kids and grownups, respectively, are chosen at random. Your task is
to coordinate the factory by writing the code for the two procedures chipsReady() and
doughReady().

Synchronize the factory using semaphores.

Hint:A correct solution will uphold the following conditions at all times:
Correctness conditions: (1) there must exist a 1:5 mapping from grownups to kids among the
participants eating cookies at all times, and (2) the number of grownups eating cookies must
correspond to the batches of cookies made.
Progress condition: if the ingredients for making cookies are available, your code must make
cookies and enable the appropriate number of people to eat them.

Note: A participant is said to be eating cookies as soon as your functions (doughReady() and
chipsReady()) have returned.

Note also the lack of a fairness condition, which simplifies your implementation.

